1.3 Solutions 63
Differentiating (1) twice
d^4 y
dx^4
+
d^3 y
dx^3
− 2
d^2 y
dx^2
=8 cosh 2x (3)
Multiply (1) by (4) and subtract the resulting equation from (3)
d^4 y
dx^4
+
d^3 y
dx^3
−
6d^2 y
dx^2
−
4dy
dx
+ 8 y=0(4)
D^4 +D^3 − 6 D^2 − 4 D+ 8 = 0
(D−1)(D−2)(D+2)^2 =^0
D= 1 , 2 ,− 2 ,− 2
The complete solution of (4) is
y=C 1 ex+C 3 e^2 x+C 2 e−^2 x+C 4 xe−^2 x
=U+C 3 e^2 x+C 4 xe−^2 x
=U+V
V=C 3 e^2 x+C 4 xe−^2 x (5)
Inserting (5) in (1), writing 2 cosh 2 x =e^2 x+e−^2 xand comparing the
coefficients ofe^2 xande−^2 x, we findC 3 =^14 andC 4 =−^13. Thus the complete
solution of (1) is
y=C 1 ex+C 2 e−^2 x+
1
4
e^2 x−
1
3
xe−^2 x
1.66
xdy
dx
−y=x^2
dy
dx
−
y
x
=x
The standard equation is
dy
dx
+Py=Q
∴P=−
1
x
;Q=x
yexp
(∫
pdx
)
=
[∫
Qexp
(∫
pdx
)]
dx+C
yexp
(
−
∫
1
x
dx
)
=
[∫
xexp
(
−
∫
1
x
dx
)]
+C
yexp(−lnx)=
[∫
xexp(−lnx)
]
+C
yx−^1 =
∫
xx−^1 dx+C
y=x^2 +Cx