64 1 Mathematical Physics
1.67 (a)y′−
2 y
x=
1
x^3(1)
Lety=px,y′=p+xp′
Then (1) becomes
xp′−p= 1 /x^3
Nowddx(p
x)
=xpx− 2 p∴xp′−p=x^2d
dx(p
x)
=
1
x^3
d
dx(p
x)
=
1
x^5or d(p
x)
=
dx
x^5
Integrating
p
x=−
1
4 x^4+C
ory
x^2=−
1
4 x^4+C
y=−1
4 x^2+Cx^2
It is inhomogeneous, first order.
(b)y′′+ 5 y′+ 4 y= 0
D^2 +^5 D+^4 =^0
(D+4)(D+1)= 0
D=− 4 ,− 1
y=Ae−^4 x+Be−x
It is inhomogeneous, second order.1.68 (a)dy
dx+y=e−x
Compare with the standard equation
dy
dx+py=QP=1;Q=e−xyexp(∫
pdx)
=
[∫
Qexp(∫
pdx)]
dx+Cyexp(∫
1dx)
=
[∫
e−xexp(∫
1dx)]
dx+Cyex=x+C
y=xe−x+Ce−x(b)d(^2) y
dx^2
- 4 y=2 cos(2x)(1)
The complimentary function is obtained fromy′′+ 4 y= 0
y=U=C 1 sin 2x+C 2 cos 2x
Differentiate (1) twice