64 1 Mathematical Physics
1.67 (a)y′−
2 y
x
=
1
x^3
(1)
Lety=px,y′=p+xp′
Then (1) becomes
xp′−p= 1 /x^3
Nowddx
(p
x
)
=xpx− 2 p
∴xp′−p=x^2
d
dx
(p
x
)
=
1
x^3
d
dx
(p
x
)
=
1
x^5
or d
(p
x
)
=
dx
x^5
Integrating
p
x
=−
1
4 x^4
+C
or
y
x^2
=−
1
4 x^4
+C
y=−
1
4 x^2
+Cx^2
It is inhomogeneous, first order.
(b)y′′+ 5 y′+ 4 y= 0
D^2 +^5 D+^4 =^0
(D+4)(D+1)= 0
D=− 4 ,− 1
y=Ae−^4 x+Be−x
It is inhomogeneous, second order.
1.68 (a)
dy
dx
+y=e−x
Compare with the standard equation
dy
dx
+py=Q
P=1;Q=e−x
yexp
(∫
pdx
)
=
[∫
Qexp
(∫
pdx
)]
dx+C
yexp
(∫
1dx
)
=
[∫
e−xexp
(∫
1dx
)]
dx+C
yex=x+C
y=xe−x+Ce−x
(b)d
(^2) y
dx^2
- 4 y=2 cos(2x)(1)
The complimentary function is obtained fromy′′+ 4 y= 0
y=U=C 1 sin 2x+C 2 cos 2x
Differentiate (1) twice