1.3 Solutions 79
Mx(t)=Eext=∑∞
x= 0
extB(x)=
∑∞
x= 0(
N
r)
(pet)r(1−p)N−r=(pet+ 1 −p)N∑(N
r)
prqN−r=(pet+ 1 −p)Nμ^0 n=∂nMx(t)
∂tn|t= 0Thereforeμ^01 =∂∂Mt|t= 0 =Npet(q+pet)N−^1 |t= 0 =Np
Thus the mean=Np(c)μ^02 =∂^2 M
∂t^2=[N(N−1)p^2 et(q+pet)N−^2 +Npet(q+pet)N−^1 ]t= 0=N(N−1)p^2 +NpButμ 2 =μ^02 −(μ^01 )^2 =N(N−1)p^2 +Np−N^2 p^2=Np−Np^2 =Np(1−p)=Npqorσ=√
Npq1.95 Total counting rate/minute,m 1 = 245
Background rate/minute,m 2 = 49
Counting rate of source,m=m 1 −m 2 = 196m 1 =n 1
t 1±
√
n 1
t 1;m 2 =n 2
t 2±
√
n 2
t 2; Net countm=m 1 −m 2σ=(σ 12 +σ 22 )^1 /^2 =(
n 1
t 12+
n 2
t 22) 1 / 2
=
(
m 1
t 1+
m 2
t 2) 1 / 2
σ=(
m 1
t 1+
m 2
t 2) 1 / 2
=
(
49
100
+
245
20
) 1 / 2
= 3. 57
Percentage S.D.=mσ× 100 =^3196.^57 × 100 = 1 .8%1.96 (a)B(x)=N!
x!(N−x)!pxqN−xUsing Sterling’s theorem