80 1 Mathematical Physics
N!→√
2 πNNNe−Nx!→√
2 πxxxe−x(N−x)!→√
2 π(N−x)(N−x)N−xe−N+xB(x)→f(x)=√
N
2 πx(N−x)pxqN−xNN
xx(N−x)N−x=
√
N
2 πx(N−x)(
Np
x)x(
Nq
(N−x))N−xLetδdenote the deviation ofxfrom the expected valueNp, that isδ=x−NpthenN−x=N−Np−δ=Nq−δf(x)=[
2 πNpq(
1 +
δ
Np)(
1 −
δ
Nq)]− 1 / 2
(
1 +
δ
Np)−(Np+δ)
·(
1 −
δ
Nq)−(Nq−δ)Assume that|δ|Npqso that
∣
∣
∣
∣δ
Np∣
∣
∣
∣1 and∣
∣
∣
∣
δ
Nq∣
∣
∣
∣^1
The first bracket reduces to (2πNpq)−(^12)
. Take logeon both sides.
ln[
f(x)(2πNpq)12 ]
=−(Np+δ)ln(
1 +
δ
Np)
−(Nq−δ)ln(
1 −
δ
Nq)
=−(Np+δ)(
δ
Np−
δ^2
2 N^2 p^2+
δ^3
3 N^3 p^3−···
)
−(Nq−δ)(
−
δ
Nq−
δ^2
2 N^2 q^2−
δ^3
3 N^3 q^3−···
)
=−
δ^2
2 Npq−
δ^3 (p^2 −q^2 )
6 N^2 p^2 q^2Neglect theδ^3 term and puttingσ=√
Npqandσ=x−Np=x ̄.f(x)=1
σ√
2 πexp[
−(x− ̄x)^2
2 σ^2]
(Normal or Gaussian distribution)