and have approximate normal distributions. We are interested in
testing the hypothesesThe statisticH 1 : p 1 p 2H 0 : p 1 p 2Pˆ 1 X 1
n 1 Pˆ 2 X 2
n 2
362 CHAPTER 10 STATISTICAL INFERENCE FOR TWO SAMPLESZ (10-32)Pˆ 1 Pˆ 2 1 p 1 p 22Bp 111 p 12
n 1p 211 p 22
n 2is distributed approximately as standard normal and is the basis of a test for H 0 : p 1 p 2.
Specifically, if the null hypothesis H 0 : p 1 p 2 is true, using the fact that p 1 p 2 p, the
random variableis distributed approximately N(0, 1). An estimator of the common parameter pisThe test statisticfor H 0 : p 1 p 2 is thenThis leads to the test procedures described below.Z 0 Pˆ 1 Pˆ 2BPˆ 11 Pˆ 2 a1
n 11
n 2 bPˆX 1 X 2
n 1 n 2ZPˆ 1 Pˆ 2Bp 11 p 2 a1
n 11
n 2 bNull hypothesis: H 0 : p 1 p 2Test statistic: (10-33)Alternative Hypotheses Rejection CriterionH 1 : p 1
p 2 z 0
z
H 1 : p 1 p 2 z 0 zH 1 : p 1 p 2 z 0
z
2 or z 0 z
2Z 0 Pˆ 1 Pˆ 2BPˆ 11 Pˆ 2 a1
n 11
n 2 bc 10 .qxd 5/16/02 1:31 PM Page 362 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH114 FIN L:Quark Files: