10-2Proof Since U 1 and U 2 are independent chi-square random variables, their joint probability
distribution isUsing the method in Equation S5-4, define the new random variable MU 2. The inverse
solutions ofareTherefore, the Jacobian isThus, the joint probability density function of Xand MisThe probability density function of FisSubstituting and , we obtainf 1 x 2 a 1
2 b 1 2
x^1 2 ^121 ^1 ^22 2 a 1
2
b a 2
2
b(^)
0
°
2 z
1
2 x^1
¢
1 1 22 2 1
ez 2 a
1
2 x^1 b
1
dz
dm 2 a
1
2 x^1 b
1
z dz
m
z^ a
1
2 x^1 b
a
1
2 xb
1 2 1
a
1
2 b
21 ^1 ^22 2 a
1
2
b a
2
2
b
(^)
0
m^1 ^1 ^22 2 ^1 e^1 m^2231 ^1 ^22 x^14 dm
f 1 x 2
0f 1 x, m 2 dmf 1 x, m 2 a 1
2 mxb 1 2 1m^2 2 ^1 e^11 22 31 ^1 ^22 mxm^4 a
1
2 b^ m2 ^1 2 a 1
2
b 2 ^2 2 ^ a 2
2
b, 0
x, m
J† 1
2 m
0 1
2 x
1†
1
2 mu 1 12 mx^ and^ u^2 m
xau 1
1 b^au 22 b^ and^ mu^2
f 1 u 1 , u 22 u 11 2 ^1 u 22 2 ^12 ^1 2 a 1
2b 2 ^2 2 ^ a 2
2be^1 u^1 u^22 2 , 0
u 1 , u 2
PQ220 6234F.CD(10) 5/16/02 2:41 PM Page 2 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH114 FIN L:Quark F