the reversible capacity of Li//SAMsC//LFP
recovers to 163 mA·hour g−^1 , indicating ex-
cellent rate performance (Fig. 5D). In addition,
SAMs can be employed to boost the perform-
ance of cells with highly concentrated electro-
lytes (HCEs). The SAMsC-based full cell with a
higher concentration of LiTFSI generates more
LiF in the SEI, thus rendering a prolonged life
span of the battery under the HCE condition
(fig. S33). Using another typical unstable
cathode, the Li//SAMsC//LiNi0.8Co0.1Mn0.1O 2
(NCM811) full cell also has enhanced cyclabil-
ity (fig. S34) and rate performance (fig. S35).
The potential practical application of SAMs
is further demonstrated in pouch cells. The
pristine Li//LFP pouch cell with a N/P ratio
of ~5 manifests rapid capacity decay toward
battery failure, whereas the Li//SAMsC//LFP
pouch cell exhibits much better cycling stabil-
ity, with an extended cycle life under similar
conditions (fig. S36). The improved cycle life
proves the substantial advantages of the LiF-
rich SEI originating from the surface dipole–
directed degradation of Li salts.
With the use of a SAM-grafted separator, we
have demonstrated a strategy to regulate elec-
trolyte degradation for constructing stable
LMBs. Comprehensive simulations and char-
acterizations reveal the critical role of ordered
polar carboxyl groups in promoting the cleav-
age of C–F bonds to generate a LiF-rich SEI
involving dipole moment–induced excess elec-
trons. The LiF-enriched SEI is beneficial for
stabilizing the Li/electrolyte interface, thus
substantially inhibiting the formation of Li
dendrites and boosting the life span of the Li
anode. This long-established SAMs technique
based on surface chemistry provides a solution
to uncontrollable electrolyte degradation and
SEI formation in batteries. With SAM-grafted
separators, full cells of LMBs exhibit enhanced
cyclability even under stringent conditions.
This facile strategy can potentially be extended
to other electrode systems by tailoring the
molecular structures of SAMs to build better
energy devices.
REFERENCESANDNOTES
- J. Liuet al.,Nat. Energy 4 , 180–186 (2019).
- X. B. Cheng, R. Zhang, C. Z. Zhao, Q. Zhang,Chem. Rev. 117 ,
10403 – 10473 (2017). - L. Liet al.,Science 359 , 1513–1516 (2018).
- D. C. Lin, Y. Y. Liu, Y. Cui,Nat. Nanotechnol. 12 , 194– 206
(2017). - C. B. Jinet al.,Nat. Energy 6 , 378–387 (2021).
- C. Fanget al.,Nature 572 , 511–515 (2019).
- Z. W. Zhanget al.,Science 375 , 66–70 (2022).
- Y. Gaoet al.,Nat. Energy 5 , 534–542 (2020).
- P. C. Zouet al.,Chem. Rev. 121 , 5986–6056 (2021).
- Y. Z. Liet al.,Science 358 , 506–510 (2017).
- J. Alvaradoet al.,Energy Environ. Sci. 12 , 780–794 (2019).
- M.Q.Wanget al.,J. Phys. Chem. C 122 , 9825– 9834
(2018). - D. J. Yoo, S. Yang, K. J. Kim, J. W. Choi,Angew. Chem. Int. Ed.
59 , 14869–14876 (2020). - X. Q. Zhang, X. B. Cheng, X. Chen, C. Yan, Q. Zhang,Adv.
Funct. Mater. 27 , 1605989 (2017). - X. L. Fanet al.,Sci. Adv. 4 , eaau9245 (2018).
- M. Chenet al.,Adv. Funct. Mater. 31 , 2102228 (2021).
- M. Mitsuya,Langmuir 10 , 1635–1637 (1994).
- J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo,
G. M. Whitesides,Chem. Rev. 105 , 1103–1169 (2005). - R. W. Yi, Y. Y. Mao, Y. B. Shen, L. W. Chen,J. Am. Chem. Soc.
143 , 12897–12912 (2021). - S. Duhmet al.,Nat. Mater. 7 , 326–332 (2008).
- T. Morita, S. Kimura,J. Am. Chem. Soc. 125 , 8732– 8733
(2003). - L. J. Zuoet al.,J. Am. Chem. Soc. 137 , 2674–2679 (2015).
- M. S. Limet al.,Langmuir 23 , 2444–2452 (2007).
- C. F. Liet al.,Nat. Commun. 10 , 1363 (2019).
- D. C. Linet al.,Nat. Nanotechnol. 11 , 626–632 (2016).
- Z. X. Wanget al.,Adv. Energy Mater. 10 , 1903843 (2020).
- H. Yildirim, J. B. Haskins, C. W. Bauschlicher Jr., J. W. Lawson,
J. Phys. Chem. C 121 , 28214–28234 (2017). - O. W. Shenget al.,Adv. Mater. 32 , 2000223 (2020).
- L. E. Camacho-Forero, P. B. Balbuena,Phys. Chem. Chem.
Phys. 19 , 30861–30873 (2017). - P. Politzer, J. S. Murray, inChemical Reactivity Theory, vol. 17
(CRC, 2009), pp. 243–254. - R. A. Lewiset al.,Proc. Natl. Acad. Sci. U.S.A. 78 , 4579– 4583
(1981). - J. Baeet al.,Energy Environ. Sci. 12 , 3319–3327 (2019).
744 18 FEBRUARY 2022•VOL 375 ISSUE 6582 science.orgSCIENCE
Fig. 5. Electrochemical performance of symmetric half cells and full cells equipped with SAMs.
(AandB) Galvanostatic discharge and charge voltage curves of the symmetric coin cells at (A) 1 mA cm−^2
with an areal capacity of 1 mA·hour cm−^2 and at (B) 5 mA cm−^2 with an areal capacity of 5 mA·hour cm−^2.
(C) Long-term cycling performance of the batteries using a Li-deposited Cu anode (10 mA·hour cm−^2 ),
aLFPcathode(3.2mA·hourcm−^2 ), and a LiTFSI-containing ether-based electrolyte (60ml) at a current
density of 1 C (1 C = 170 mA g−^1 ). (D) Rate performance of Li//LFP, Li//SAMsA//LFP, and Li//SAMsC//
LFP full cells with a N/P ratio of 3.5. (E) Discharge and charge voltage profiles of a Li//SAMsC//LFP
full cell at different current densities.
RESEARCH | RESEARCH ARTICLES