Science - USA (2022-02-18)

(Antfer) #1

when using the methyl ester vinyl iodide 40.
Use of halo-acid 5 in these measurements gen-
erated a catalytic current without much elec-
trode passivation even in the absence of RAE.
Unexpectedly, after addition of RAE 7 to
halo-acid 5 and NiCl 2 (bpy), the second reduc-
tion wave was still observed at−1.48 V versus
Ag/AgCl. We propose that this wave is the
electrochemical reduction of a nickel (II/III)
alkenyl to a nickel (I) alkenyl intermediate
( 46 , 47 ). This profound difference in behav-
ior when using halo-acid 5 instead of methyl
ester 40 has important implications for the
detrimental behavior of carboxylic acids on
reaction yield in the absence of AgNO 3. Recent
evidence has emerged suggesting the deacti-
vation of nickel (I) intermediates through
dimerization or aggregation ( 48 ). One can
also imagine how this reduced species could
accelerate the consumption of RAE in the
homogeneous environment ( 49 ). Comparing
the onset of these two reduction waves to the
cathode potential of the reaction without
AgNO 3 (Ecathode=−1.66 V versus Ag/AgCl) and
with AgNO 3 (Ecathode=−1.15VversusAg/AgCl)
is particularly informative. This finding im-
plied that the Ag-NP layer decreases over-
potential to the point immediately before the
second reduction wave, whereas with the use
of bare glassy carbon electrodes, more reduc-
ing potentials beyond the second wave under
standard reaction conditions (constant cur-
rent) are applied.
In summary, it appears that the silver-NP
layer on the electrode has several effects on
the reaction components. First, the silver-NP
layer lowers the overpotential preventing cat-
alyst overreduction and electrode passivation.
Second, the lower overpotential also inhibits
the formation of Ni(I)-alkenyl intermediates,
which appear to form even in the presence of
RAEs when using vinyl iodides bearing car-
boxylicacids.Third,thislayerslowsmass
transport and reduction of RAEs at the elec-
trode surface likely from complications arising
with adsorptive behavior, whereas diffusion
of the catalyst is slightly affected. Though no
singular result explains the role of the silver-
NP layer, we hypothesize that the overall ben-
efit observed is likely the result of the findings
discussed above working in concert. Further
interdisciplinary studies between synthetic,
electroanalytical, and materials specialists
will likely provide deeper insights into this
discovery.


Outlook


This study of terpene synthesis has provided
an efficient platform for the modular con-
struction of polyunsaturated molecules with
precise geometrical control ( 50 ). Its imple-
mentation required methodological advance-
ment, thereby revealing a relationship between
productive catalysis and materials science.


Electrochemistry offers chemists enabling
opportunities through variables that are spe-
cifically available to it. Electrode modification
offers new possibilities for synthetic chemists
to optimize difficult reactions—analytical
chemists and physical chemists have long
embraced this concept to overcome their own
chemical challenges. The potential of these
parameters to enable useful chemical reactiv-
ityisanattractiveareaforfurtherstudy.

REFERENCES AND NOTES


  1. K. C. Nicolaou, E. J. Sorensen,Classics in Total Synthesis:
    Targets, Strategies, Methods(VCH, 1996). pp. xxiii–798.

  2. D. Cox-Georgian, N. Ramadoss, C. Dona, C. Basu,“Therapeutic
    and Medicinal Uses of Terpenes”inMedicinal Plants,
    N. Joshee, S. Dhekney, P. Parajuli, Eds. (Springer, 2019),
    pp. 333–359 (2019).

  3. D. J. Jansen, R. A. Shenvi,Future Med. Chem. 6 , 1127– 1148
    (2014).

  4. S. Serra, inStudies in Natural Products Chemistry, R. Atta ur,
    Ed. (Elsevier, 2015), vol. 46, pp. 201–226.

  5. W. S. Johnson, M. B. Gravestock, B. E. McCarry,J. Am. Chem.
    Soc. 93 , 4332–4334 (1971).

  6. R. A. Yoder, J. N. Johnston,Chem. Rev. 105 , 4730– 4756
    (2005).

  7. C. N. Ungarean, E. H. Southgate, D. Sarlah,Org. Biomol. Chem.
    14 , 5454–5467 (2016).

  8. C. Thirsk, A. Whiting,J. Chem. Soc. Perkin Trans. 1 , 999– 1023
    (2002).

  9. E. Negishi, G. Wang, H. Rao, Z. Xu,J. Org. Chem. 75 , 3151– 3182
    (2010).

  10. J. Li, A. S. Grillo, M. D. Burke,Acc. Chem. Res. 48 , 2297– 2307
    (2015).

  11. P. M. Dewick,“The mevalonate and methylerythritol phosphate
    pathways: Terpenoids and steroids”inMedicinal Natural
    Products. A Biosynthetic Approach(Wiley, ed. 2, 2002),
    pp. 167–289.

  12. J. M. Smith, S. J. Harwood, P. S. Baran,Acc. Chem. Res. 51 ,
    1807 – 1817 (2018).

  13. D. S. Peterset al.,Acc. Chem. Res. 54 , 605–617 (2021).

  14. J. T. Edwardset al.,Nature 545 , 213–218 (2017).

  15. C. Cannes, S. Condon, M. Durandetti, J. Périchon, J. Y. Nédélec,J.
    Org. Chem. 65 , 4575–4583 (2000).

  16. L. F. T. Novaeset al.,Chem. Soc. Rev. 50 , 7941– 8002
    (2021).

  17. T. Wirtanen, T. Prenzel, J.-P. Tessonnier, S. R. Waldvogel,
    Chem. Rev. 121 , 10241–10270 (2021).

  18. J. M. Campelo, D. Luna, R. Luque, J. M. Marinas, A. A. Romero,
    ChemSusChem 2 , 18–45 (2009).

  19. K. M. M. Huihuiet al.,J. Am. Chem. Soc. 138 , 5016– 5019
    (2016).

  20. T. Koyanagiet al.,Org. Lett. 21 , 816–820 (2019).

  21. H. Liet al.,Org. Lett. 20 , 1338–1341 (2018).

  22. R. J. Perkins, D. J. Pedro, E. C. Hansen,Org. Lett. 19 ,
    3755 – 3758 (2017).
    23.R.Slegeris,G.B.Dudley,Tetrahedron 72 , 3666– 3672
    (2016).

  23. A. M. Camelio, T. C. Johnson, D. Siegel,J. Am. Chem. Soc. 137 ,
    11864 – 11867 (2015).

  24. B. B. Snider, J. Y. Kiselgof, B. M. Foxman,J. Org. Chem. 63 ,
    7945 – 7952 (1998).

  25. R. P. Walker, D. J. Faulkner,J. Org. Chem. 46 , 1098– 1102
    (1981).

  26. J. E. Thompson, R. P. Walker, D. J. Faulkner,Mar. Biol. 88 ,
    11 – 21 (1985).

  27. S. Serra, V. Lissoni,Eur. J. Org. Chem. 2015 , 2226– 2234
    (2015).

  28. R. H. Scheffrahn, L. K. Gaston, J. J. Sims, M. K. Rust,J. Chem.
    Ecol. 9 , 1293–1305 (1983).

  29. W. L. Roelofset al.,Nature 267 , 698–699 (1977).

  30. D. J. Weix,Acc. Chem. Res. 48 , 1767–1775 (2015).

  31. C. Brito, V. L. Jordão, G. J. Pierce,J. Mar. Biol. Assoc. U. K. 96 ,
    585 – 596 (2016).

  32. A. F. Barrero, J. Altarejos, E. J. Alvarez-Manzaneda,
    J. M. Ramos, S. Salido,J. Org. Chem. 61 , 2215– 2218
    (1996).

  33. V. Schubert, A. Dietrich, T. Ulrich, A. Mosandl,Z. Naturforsch.
    C J. Biosci. 47 , 304–307 (1992).
    35. G. Ben Salha, M. Abderrabba, J. Labidi,Rev. Chem. Eng. 37 ,
    433 – 447 (2021).
    36. W.-K. Chan, L. T. Tan, K.-G. Chan, L.-H. Lee, B.-H. Goh,
    Molecules 21 , 529 (2016).
    37. D. McGinty, C. S. Letizia, A. M. Api,Food Chem. Toxicol. 48
    (Suppl 3), S43–S45 (2010).
    38. X.-Y. Dong, Z.-W. Gao, K.-F. Yang, W.-Q. Zhang, L.-W. Xu,Catal.
    Sci. Technol. 5 , 2554–2574 (2015).
    39. R. R. Chillawar, K. K. Tadi, R. V. Motghare,J. Anal. Chem. 70 ,
    399 – 418 (2015).
    40. J.-M. Zen, A. Senthil Kumar, D.-M. Tsai,Electroanalysis 15 ,
    1073 – 1087 (2003).
    41. J. E. Nutting, J. B. Gerken, A. G. Stamoulis, D. L. Bruns,
    S. S. Stahl,J. Org. Chem. 86 , 15875–15885 (2021).
    42. X. Luo, A. Morrin, A. J. Killard, M. R. Smyth,Electroanalysis 18 ,
    319 – 326 (2006).
    43. C. M. Welch, C. E. Banks, A. O. Simm, R. G. Compton,
    Anal. Bioanal. Chem. 382 , 12–21 (2005).
    44. C. M. Fox, C. B. Breslin,J. Appl. Electrochem. 50 , 125– 138
    (2020).
    45. C. Karuppiahet al.,RSC Advances 5 , 31139– 31146
    (2015).
    46. A. A. Isse, S. Gottardello, C. Maccato, A. Gennaro,Electrochem.
    Commun. 8 , 1707–1712 (2006).
    47. X. Ren, X. Meng, D. Chen, F. Tang, J. Jiao,Biosens. Bioelectron.
    21 , 433–437 (2005).
    48. M. A. Bhosale, B. M. Bhanage,Curr. Org. Chem. 19 , 708– 727
    (2015).
    49. R. G. Comptonet al.,Proc. R. Soc. Lond. A 418 , 113– 154
    (1988).
    50. J. Guet al.,ChemRxiv. Cambridge: Cambridge Open Engage
    doi: 10.26434/chemrxiv-2021-kn6tl (2021).


ACKNOWLEDGMENTS
We thank D.-H. H. and L.P. for assistance with NMR spectroscopy;
J. Chen, B. Sanchez, and E. Sturgell (Scripps Automated Synthesis
Facility) for assistance with high-performance liquid chromatography,
high-resolution mass spectrometry, and liquid chromatography–
mass spectrometry and A. Rheingold, M. Gembicky, and E. Samolova
(University of California, San Diego) for assistance with x-ray
crystallography. We are grateful to University of Utah shared facilities
of the Micron Technology Foundation Inc. We thank J. Vantourout,
Y. Kawamata, S. Gnaim, Y. Y. See, J. Edwards, K. McClymont, C. Bi,
and B. Smith for insightful discussions; K. X. Rodriguez, J. Gu,
A. L. Rerick, and C. R. Pitts, for their use of this chemistry in other
systems; and K. Eberle, G. Laudadio, A. Garrido-Castro, and
M. Condakes for assistance in the preparation of the manuscript.
Funding:Financial support for this work was provided by the
NIH (MIRA GM-118176), NSF Center for Synthetic Organic
Electrochemistry (CHE-2002158), and the Microscopy Suite
sponsored by the College of Engineering, Health Sciences Center,
Office of the Vice President for Research, the Utah Science
Technology and Research (USTAR) initiative of the State of Utah
and, in part, by the MRSEC Program of the NSF under Award no.
DMR-1121252. S.J.H. thanks the Fletcher-Jones Foundation for
fellowship funding. M.D.P. thanks Richard and Nicola Lerner for
the Endowed Fellowship.Author contributions:S.J.H. and P.S.B.
conceived of the work. S.J.H., M.D.P., C.N.G., P.P., H.D.A., S.L.A.,
and P.S.B. designed the experiments. S.J.H., M.D.P., C.N.G., and
P.P. ran the experiments. S.J.H., M.D.P., C.N.G., P.P., H.D.A., S.L.A.,
and P.S.B. analyzed the data. Z.Y. and L.S. conducted the
flow-reactor scale-up. S.J.H., M.D.P., and P.S.B. wrote the
manuscript. C.N.G., P.P., H.D.A., and S.L.A. provided revisions.
Competing interests:The authors declare no competing
interests.Data and materials availability:Experimental and
analytical procedures and full spectral data are available in
the supplementary materials. X-ray data and models are
availableattheCambridgeCrystallographicDataCentreunder
accession numbers CCDC-2033224 (S12) and CCDC-2109535
(NiCl 3 (PtBu 3 )•HPtBu 3 ).

SUPPLEMENTARY MATERIALS
science.org/doi/10.1126/science.abn1395
Materials and Methods
Figs. S1 to S114
Tables S1 to S62
References ( 51 Ð 102 )
5 November 2021; accepted 18 January 2022
10.1126/science.abn1395

752 18 FEBRUARY 2022•VOL 375 ISSUE 6582 science.orgSCIENCE


RESEARCH | RESEARCH ARTICLES

Free download pdf