Science - USA (2022-02-18)

(Antfer) #1

  1. H. Guoet al., Inherited and multiple de novo mutations in
    autism/developmental delay risk genes suggest a
    multifactorial model.Mol. Autism 9 , 64 (2018). doi:10.1186/
    s13229-018-0247-z; pmid: 30564305

  2. L. Y. AlAyadhiet al., High-resolution SNP genotyping platform
    identified recurrent and novel CNVs in autism multiplex
    families.Neuroscience 339 , 561–570 (2016). doi:10.1016/
    j.neuroscience.2016.10.030; pmid: 27771533

  3. S. V. Ranneva, V. F. Maksimov, I. M. Korostyshevskaja,
    T. V. Lipina, Lack of synaptic protein, calsyntenin-2, impairs
    morphology of synaptic complexes in mice.Synapse 74 ,
    e22132 (2020). doi:10.1002/syn.22132; pmid: 31529526

  4. S. V. Ranneva, K. S. Pavlov, A. V. Gromova,
    T. G. Amstislavskaya, T. V. Lipina, Features of emotional and
    social behavioral phenotypes of calsyntenin2 knockout mice.
    Behav. Brain Res. 332 , 343–354 (2017). doi:10.1016/
    j.bbr.2017.06.029; pmid: 28647593

  5. J. C. Silbereis, S. Pochareddy, Y. Zhu, M. Li, N. Sestan, The cellular
    and molecular landscapes of the developing human central
    nervous system.Neuron 89 , 248–268 (2016). doi:10.1016/
    j.neuron.2015.12.008; pmid: 26796689

  6. A. López-Tobónet al., Human cortical organoids expose a
    differential function of GSK3 on cortical neurogenesis.
    Stem Cell Reports 13 , 847–861 (2019). doi:10.1016/
    j.stemcr.2019.09.005; pmid: 31607568

  7. T. J. Nowakowskiet al., Spatiotemporal gene expression
    trajectories reveal developmental hierarchies of the human
    cortex.Science 358 , 1318–1323 (2017). doi:10.1126/science.
    aap8809; pmid: 29217575

  8. A. A. Pollenet al., Molecular identity of human outer radial
    glia during cortical development.Cell 163 , 55–67 (2015).
    doi:10.1016/j.cell.2015.09.004; pmid: 26406371

  9. M. Florioet al., Human-specific geneARHGAP11Bpromotes
    basal progenitor amplification and neocortex expansion.
    Science 347 , 1465–1470 (2015). doi:10.1126/science.aaa1975;
    pmid: 25721503

  10. B. E. L. Ostrem, J. H. Lui, C. C. Gertz, A. R. Kriegstein, Control
    of outer radial glial stem cell mitosis in the human brain.
    Cell Rep. 8 , 656–664 (2014). doi:10.1016/
    j.celrep.2014.06.058; pmid: 25088420

  11. M. Kanehisa, S. Goto, KEGG: Kyoto encyclopedia of genes
    and genomes.Nucleic Acids Res. 28 , 27–30 (2000).
    doi:10.1093/nar/28.1.27; pmid: 10592173

  12. A. Liberzonet al., The Molecular Signatures Database
    hallmark gene set collection.Cell Syst. 1 , 417–425 (2015).
    doi:10.1016/j.cels.2015.12.004; pmid: 26771021

  13. Deciphering Developmental Disorders Study, Prevalence
    and architecture of de novo mutations in developmental
    disorders.Nature 542 , 433–438 (2017). doi:10.1038/
    nature21062; pmid: 28135719

  14. R. K. C. Yuenet al., Whole genome sequencing resource
    identifies 18 new candidate genes for autism spectrum
    disorder.Nat. Neurosci. 20 , 602–611 (2017). doi:10.1038/
    nn.4524; pmid: 28263302

  15. H. Guoet al., Genome sequencing identifies multiple
    deleterious variants in autism patients with more severe
    phenotypes.Genet. Med. 21 , 1611–1620 (2019). doi:10.1038/
    s41436-018-0380-2; pmid: 30504930

  16. H. A. F. Stessmanet al., Targeted sequencing identifies 91
    neurodevelopmental-disorder risk genes with autism and
    developmental-disability biases.Nat. Genet. 49 , 515– 526
    (2017). doi:10.1038/ng.3792; pmid: 28191889

  17. Online Mendelian Inheritance in Man (OMIM), About OMIM;
    http://www.omim.org/about.

  18. D. Velmeshevet al., Single-cell genomics identifies cell type-
    specific molecular changes in autism.Science 364 , 685– 689
    (2019). doi:10.1126/science.aav8130; pmid: 31097668

  19. F. K. Satterstromet al., Large-Scale Exome Sequencing Study
    Implicates Both Developmental and Functional Changes in
    the Neurobiology of Autism.Cell 180 , 568–584.e23 (2020).
    doi:10.1016/j.cell.2019.12.036; pmid: 31981491

  20. C. Yanget al., AutismKB 2.0: A knowledgebase for the
    genetic evidence of autism spectrum disorder.Database
    2018 bay106 (2018). doi:10.1093/database/bay106

  21. M. J. Gandalet al., Transcriptome-wide isoform-level
    dysregulation in ASD, schizophrenia, and bipolar disorder.
    Science 362 , eaat8127 (2018). doi:10.1126/science.aat8127;
    pmid: 30545856

  22. L. A. Weisset al., Sodium channelsSCN1A,SCN2Aand
    SCN3Ain familial autism.Mol. Psychiatry 8 , 186–194 (2003).
    doi:10.1038/sj.mp.4001241; pmid: 12610651

  23. S. De Rubeiset al., Synaptic, transcriptional and chromatin
    genes disrupted in autism.Nature 515 , 209–215 (2014).
    doi:10.1038/nature13772; pmid: 25363760
    45. R. Ben-Shalomet al., Opposing effects on NaV1.2 function
    underlie differences betweenSCN2Avariants observed in
    individuals with autism spectrum disorder or infantile
    seizures.Biol. Psychiatry 82 , 224–232 (2017). doi:10.1016/
    j.biopsych.2017.01.009; pmid: 28256214
    46. T. Munesueet al., Two genetic variants ofCD38in subjects
    with autism spectrum disorder and controls.Neurosci. Res.
    67 , 181–191 (2010). doi:10.1016/j.neures.2010.03.004;
    pmid: 20435366
    47. L. L. Martucciet al., A multiscale analysis in CD38−/−mice
    unveils major prefrontal cortex dysfunctions.FASEB J. 33 ,
    5823 – 5835 (2019). doi:10.1096/fj.201800489R;
    pmid: 30844310
    48. E. K. Ruzzoet al., Inherited and de novo genetic risk for
    autism impacts shared networks.Cell 178 , 850–866.e26
    (2019). doi:10.1016/j.cell.2019.07.015; pmid: 31398340
    49. D. H. Geschwind, Genetics of autism spectrum disorders.
    Trends Cogn. Sci. 15 , 409–416 (2011). doi:10.1016/
    j.tics.2011.07.003; pmid: 21855394
    50. G. R. Williams, Neurodevelopmental and neurophysiological
    actions of thyroid hormone.J. Neuroendocrinol. 20 , 784– 794
    (2008). doi:10.1111/j.1365-2826.2008.01733.x;
    pmid: 18601701
    51. P. Berbelet al., Delayed neurobehavioral development in
    children born to pregnant women with mild hypothyroxinemia
    during the first month of gestation: The importance of early
    iodine supplementation.Thyroid 19 , 511–519 (2009).
    doi:10.1089/thy.2008.0341; pmid: 19348584
    52. R. Morgensternet al., Phthalates and thyroid function in
    preschool age children: Sex specific associations.Environ. Int.
    106 , 11–18 (2017). doi:10.1016/j.envint.2017.05.007;
    pmid: 28554096
    53. S. Lignellet al., Maternal body burdens of PCDD/Fs and
    PBDEs are associated with maternal serum levels of thyroid
    hormones in early pregnancy: A cross-sectional study.Environ.
    Health 15 , 55 (2016). doi:10.1186/s12940-016-0139-7;
    pmid: 27114094
    54. J.-B. Finiet al., Human amniotic fluid contaminants alter
    thyroid hormone signalling and early brain development in
    Xenopusembryos.Sci. Rep. 7 , 43786 (2017). doi:10.1038/
    srep43786; pmid: 28266608
    55. M. Boas, U. Feldt-Rasmussen, K. M. Main, Thyroid effects of
    endocrine disrupting chemicals.Mol. Cell. Endocrinol. 355 ,
    240 – 248 (2012). doi:10.1016/j.mce.2011.09.005;
    pmid: 21939731
    56. S. Hanet al., A non-canonical role for the proneural gene
    Neurog1as a negative regulator of neocortical neurogenesis.
    Development 145 , dev.157719 (2018). doi:10.1242/
    dev.157719; pmid: 30201687
    57. J. R. Rochester, A. L. Bolden, C. F. Kwiatkowski, Prenatal
    exposure to bisphenol A and hyperactivity in children: A
    systematic review and meta-analysis.Environ. Int. 114 ,
    343 – 356 (2018). doi:10.1016/j.envint.2017.12.028;
    pmid: 29525285
    58. M. N. Grohset al., Prenatal maternal and childhood bisphenol
    a exposure and brain structure and behavior of young
    children.Environ. Health 18 , 85 (2019). doi:10.1186/s12940-
    019-0528-9; pmid: 31615514
    59. S. K. Witchey, J. Fuchs, H. B. Patisaul, Perinatal bisphenol A
    (BPA) exposure alters brain oxytocin receptor (OTR)
    expression in a sex- and region- specific manner: A CLARITY-
    BPA consortium follow-up study.Neurotoxicology 74 ,
    139 – 148 (2019). doi:10.1016/j.neuro.2019.06.007;
    pmid: 31251963
    60. V. Mustieleset al., Bisphenol A and its analogues: A
    comprehensive review to identify and prioritize effect
    biomarkers for human biomonitoring.Environ. Int. 144 ,
    105811 (2020). doi:10.1016/j.envint.2020.105811;
    pmid: 32866736
    61. H. R. Willseyet al., Parallel in vivo analysis of large-effect
    autism genes implicates cortical neurogenesis and estrogen
    in risk and resilience.Neuron 109 , 788–804.e8 (2021).
    doi:10.1016/j.neuron.2021.01.002; pmid: 33497602
    62. S. Akbarianet al., The PsychENCODE project.Nat.
    Neurosci. 18 , 1707–1712 (2015). doi:10.1038/nn.4156;
    pmid: 26605881
    63. A. Joet al., The versatile functions of Sox9 in development,
    stem cells, and human diseases.Genes Dis. 1 , 149–161 (2014).
    doi:10.1016/j.gendis.2014.09.004; pmid: 25685828
    64. K.I.Vong,C.K.Y.Leung,R.R.Behringer,K.M.Kwan,
    Sox9 is critical for suppression of neurogenesis but
    not initiation of gliogenesis in the cerebellum.Mol. Brain
    8 , 25 (2015). doi:10.1186/s13041-015-0115-0;
    pmid: 25888505
    65. W. Sunet al., SOX9 is an astrocyte-specific nuclear marker in
    the adult brain outside the neurogenic regions.J. Neurosci.
    37 , 4493–4507 (2017). doi:10.1523/JNEUROSCI.3199-
    16.2017; pmid: 28336567
    66. P. Selvarajet al., Neurotrophic factor-a1: A key Wnt-
    b-catenin dependent anti-proliferation factor and ERK-
    Sox9 activated inducer of embryonic neural stem cell
    differentiation to astrocytes in neurodevelopment.Stem
    Cells 35 , 557–571 (2017). doi:10.1002/stem.2511;
    pmid: 27709799
    67. N. N. Parikshaket al., Integrative functional genomic analyses
    implicate specific molecular pathways and circuits in autism.
    Cell 155 , 1008–1021 (2013). doi:10.1016/j.cell.2013.10.031;
    pmid: 24267887
    68. C. Gilissenet al., Genome sequencing identifies major causes
    of severe intellectual disability.Nature 511 , 344–347 (2014).
    doi:10.1038/nature13394; pmid: 24896178
    69. S. Tuet al., NitroSynapsin therapy for a mouse MEF2C
    haploinsufficiency model of human autism.Nat. Commun. 8 ,
    1488 (2017). doi:10.1038/s41467-017-01563-8;
    pmid: 29133852
    70. R. J. Denver, K. E. Williamson, Identification of a thyroid
    hormone response element in the mouse Kruppel-like factor
    9 gene to explain its postnatal expression in the brain.
    Endocrinology 150 , 3935–3943 (2009). doi:10.1210/
    en.2009-0050; pmid: 19359381
    71. F. Hu, J. R. Knoedler, R. J. Denver, A mechanism to enhance
    cellular responsivity to hormone action: Krüppel-Like factor 9
    promotes thyroid hormone receptor-bautoinduction during
    postembryonic brain development.Endocrinology 157 ,
    1683 – 1693 (2016). doi:10.1210/en.2015-1980;
    pmid: 26886257
    72. M. Maekawaet al., Polyunsaturated fatty acid deficiency
    during neurodevelopment in mice models the prodromal
    state of schizophrenia through epigenetic changes in nuclear
    receptor genes.Transl. Psychiatry 7 , e1229 (2017).
    doi:10.1038/tp.2017.182; pmid: 28872641
    73. O. Baud, N. Berkane, Hormonal changes associated with
    intra-uterine growth restriction: Impact on the developing
    brain and future neurodevelopment.Front. Endocrinol.
    (Lausanne) 10 , 179 (2019). doi:10.3389/fendo.2019.00179;
    pmid: 30972026
    74. T. Colborn, Neurodevelopment and endocrine disruption.
    Environ. Health Perspect. 112 , 944–949 (2004). doi:10.1289/
    ehp.6601; pmid: 15198913
    75. The Signaling Pathways Project;www.signalingpathways.org/
    index.jsf.
    76. A. Ghassabian, L. Trasande, Disruption in thyroid signaling
    pathway: A mechanism for the effect of endocrine-disrupting
    chemicals on child neurodevelopment.Front. Endocrinol. 9 ,
    204 (2018). doi:10.3389/fendo.2018.00204;
    pmid: 29760680
    77. R. M. Basnet, D. Zizioli, S. Taweedet, D. Finazzi,
    M. Memo, Zebrafish larvae as a behavioral model in
    neuropharmacology.Biomedicines 7 , 23 (2019).
    doi:10.3390/biomedicines7010023; pmid: 30917585
    78. K. G. Pratt, A. S. Khakhalin, Modeling human
    neurodevelopmental disorders in theXenopustadpole: From
    mechanisms to therapeutic targets.Dis. Model. Mech. 6 ,
    1057 – 1065 (2013). doi:10.1242/dmm.012138;
    pmid: 23929939
    79. J. F. Rovet, The role of thyroid hormones for brain
    development and cognitive function.Endocr. Dev. 26 , 26– 43
    (2014). doi:10.1159/000363153; pmid: 25231442
    80. S. Marshallet al., An empirical approach to sufficient similarity:
    Combining exposure data and mixtures toxicology data.Risk Anal.
    33 , 1582–1595 (2013). doi:10.1111/risa.12015; pmid: 23398277
    81. OECD iLibrary, Test no. 248:Xenopuseleutheroembryonic
    thyroid assay (XETA);www.oecd-ilibrary.org/environment/tg-
    248-xenopus-eleutheroembryonic-thyroid-assay-
    xeta_a13f80ee-en.
    82. R. M. Califfet al., Transforming evidence generation to
    support health and health care decisions.N. Engl. J. Med.
    375 , 2395–2400 (2016). doi:10.1056/NEJMsb1610128;
    pmid: 27974039
    83. A. Peters, T. S. Nawrot, A. A. Baccarelli, Hallmarks of
    environmental insults.Cell 184 , 1455–1468 (2021).
    doi:10.1016/j.cell.2021.01.043; pmid: 33657411
    84. M. Fisheret al., Bisphenol A and phthalate metabolite urinary
    concentrations: Daily and across pregnancy variability.
    J. Expo. Sci. Environ. Epidemiol. 25 , 231–239 (2015).
    doi:10.1038/jes.2014.65; pmid: 25248937
    85. L. E. Johns, G. S. Cooper, A. Galizia, J. D. Meeker, Exposure
    assessment issues in epidemiology studies of phthalates.


Caporaleet al.,Science 375 , eabe8244 (2022) 18 February 2022 14 of 15


RESEARCH | RESEARCH ARTICLE

Free download pdf