- H. Guoet al., Inherited and multiple de novo mutations in
autism/developmental delay risk genes suggest a
multifactorial model.Mol. Autism 9 , 64 (2018). doi:10.1186/
s13229-018-0247-z; pmid: 30564305 - L. Y. AlAyadhiet al., High-resolution SNP genotyping platform
identified recurrent and novel CNVs in autism multiplex
families.Neuroscience 339 , 561–570 (2016). doi:10.1016/
j.neuroscience.2016.10.030; pmid: 27771533 - S. V. Ranneva, V. F. Maksimov, I. M. Korostyshevskaja,
T. V. Lipina, Lack of synaptic protein, calsyntenin-2, impairs
morphology of synaptic complexes in mice.Synapse 74 ,
e22132 (2020). doi:10.1002/syn.22132; pmid: 31529526 - S. V. Ranneva, K. S. Pavlov, A. V. Gromova,
T. G. Amstislavskaya, T. V. Lipina, Features of emotional and
social behavioral phenotypes of calsyntenin2 knockout mice.
Behav. Brain Res. 332 , 343–354 (2017). doi:10.1016/
j.bbr.2017.06.029; pmid: 28647593 - J. C. Silbereis, S. Pochareddy, Y. Zhu, M. Li, N. Sestan, The cellular
and molecular landscapes of the developing human central
nervous system.Neuron 89 , 248–268 (2016). doi:10.1016/
j.neuron.2015.12.008; pmid: 26796689 - A. López-Tobónet al., Human cortical organoids expose a
differential function of GSK3 on cortical neurogenesis.
Stem Cell Reports 13 , 847–861 (2019). doi:10.1016/
j.stemcr.2019.09.005; pmid: 31607568 - T. J. Nowakowskiet al., Spatiotemporal gene expression
trajectories reveal developmental hierarchies of the human
cortex.Science 358 , 1318–1323 (2017). doi:10.1126/science.
aap8809; pmid: 29217575 - A. A. Pollenet al., Molecular identity of human outer radial
glia during cortical development.Cell 163 , 55–67 (2015).
doi:10.1016/j.cell.2015.09.004; pmid: 26406371 - M. Florioet al., Human-specific geneARHGAP11Bpromotes
basal progenitor amplification and neocortex expansion.
Science 347 , 1465–1470 (2015). doi:10.1126/science.aaa1975;
pmid: 25721503 - B. E. L. Ostrem, J. H. Lui, C. C. Gertz, A. R. Kriegstein, Control
of outer radial glial stem cell mitosis in the human brain.
Cell Rep. 8 , 656–664 (2014). doi:10.1016/
j.celrep.2014.06.058; pmid: 25088420 - M. Kanehisa, S. Goto, KEGG: Kyoto encyclopedia of genes
and genomes.Nucleic Acids Res. 28 , 27–30 (2000).
doi:10.1093/nar/28.1.27; pmid: 10592173 - A. Liberzonet al., The Molecular Signatures Database
hallmark gene set collection.Cell Syst. 1 , 417–425 (2015).
doi:10.1016/j.cels.2015.12.004; pmid: 26771021 - Deciphering Developmental Disorders Study, Prevalence
and architecture of de novo mutations in developmental
disorders.Nature 542 , 433–438 (2017). doi:10.1038/
nature21062; pmid: 28135719 - R. K. C. Yuenet al., Whole genome sequencing resource
identifies 18 new candidate genes for autism spectrum
disorder.Nat. Neurosci. 20 , 602–611 (2017). doi:10.1038/
nn.4524; pmid: 28263302 - H. Guoet al., Genome sequencing identifies multiple
deleterious variants in autism patients with more severe
phenotypes.Genet. Med. 21 , 1611–1620 (2019). doi:10.1038/
s41436-018-0380-2; pmid: 30504930 - H. A. F. Stessmanet al., Targeted sequencing identifies 91
neurodevelopmental-disorder risk genes with autism and
developmental-disability biases.Nat. Genet. 49 , 515– 526
(2017). doi:10.1038/ng.3792; pmid: 28191889 - Online Mendelian Inheritance in Man (OMIM), About OMIM;
http://www.omim.org/about. - D. Velmeshevet al., Single-cell genomics identifies cell type-
specific molecular changes in autism.Science 364 , 685– 689
(2019). doi:10.1126/science.aav8130; pmid: 31097668 - F. K. Satterstromet al., Large-Scale Exome Sequencing Study
Implicates Both Developmental and Functional Changes in
the Neurobiology of Autism.Cell 180 , 568–584.e23 (2020).
doi:10.1016/j.cell.2019.12.036; pmid: 31981491 - C. Yanget al., AutismKB 2.0: A knowledgebase for the
genetic evidence of autism spectrum disorder.Database
2018 bay106 (2018). doi:10.1093/database/bay106 - M. J. Gandalet al., Transcriptome-wide isoform-level
dysregulation in ASD, schizophrenia, and bipolar disorder.
Science 362 , eaat8127 (2018). doi:10.1126/science.aat8127;
pmid: 30545856 - L. A. Weisset al., Sodium channelsSCN1A,SCN2Aand
SCN3Ain familial autism.Mol. Psychiatry 8 , 186–194 (2003).
doi:10.1038/sj.mp.4001241; pmid: 12610651 - S. De Rubeiset al., Synaptic, transcriptional and chromatin
genes disrupted in autism.Nature 515 , 209–215 (2014).
doi:10.1038/nature13772; pmid: 25363760
45. R. Ben-Shalomet al., Opposing effects on NaV1.2 function
underlie differences betweenSCN2Avariants observed in
individuals with autism spectrum disorder or infantile
seizures.Biol. Psychiatry 82 , 224–232 (2017). doi:10.1016/
j.biopsych.2017.01.009; pmid: 28256214
46. T. Munesueet al., Two genetic variants ofCD38in subjects
with autism spectrum disorder and controls.Neurosci. Res.
67 , 181–191 (2010). doi:10.1016/j.neures.2010.03.004;
pmid: 20435366
47. L. L. Martucciet al., A multiscale analysis in CD38−/−mice
unveils major prefrontal cortex dysfunctions.FASEB J. 33 ,
5823 – 5835 (2019). doi:10.1096/fj.201800489R;
pmid: 30844310
48. E. K. Ruzzoet al., Inherited and de novo genetic risk for
autism impacts shared networks.Cell 178 , 850–866.e26
(2019). doi:10.1016/j.cell.2019.07.015; pmid: 31398340
49. D. H. Geschwind, Genetics of autism spectrum disorders.
Trends Cogn. Sci. 15 , 409–416 (2011). doi:10.1016/
j.tics.2011.07.003; pmid: 21855394
50. G. R. Williams, Neurodevelopmental and neurophysiological
actions of thyroid hormone.J. Neuroendocrinol. 20 , 784– 794
(2008). doi:10.1111/j.1365-2826.2008.01733.x;
pmid: 18601701
51. P. Berbelet al., Delayed neurobehavioral development in
children born to pregnant women with mild hypothyroxinemia
during the first month of gestation: The importance of early
iodine supplementation.Thyroid 19 , 511–519 (2009).
doi:10.1089/thy.2008.0341; pmid: 19348584
52. R. Morgensternet al., Phthalates and thyroid function in
preschool age children: Sex specific associations.Environ. Int.
106 , 11–18 (2017). doi:10.1016/j.envint.2017.05.007;
pmid: 28554096
53. S. Lignellet al., Maternal body burdens of PCDD/Fs and
PBDEs are associated with maternal serum levels of thyroid
hormones in early pregnancy: A cross-sectional study.Environ.
Health 15 , 55 (2016). doi:10.1186/s12940-016-0139-7;
pmid: 27114094
54. J.-B. Finiet al., Human amniotic fluid contaminants alter
thyroid hormone signalling and early brain development in
Xenopusembryos.Sci. Rep. 7 , 43786 (2017). doi:10.1038/
srep43786; pmid: 28266608
55. M. Boas, U. Feldt-Rasmussen, K. M. Main, Thyroid effects of
endocrine disrupting chemicals.Mol. Cell. Endocrinol. 355 ,
240 – 248 (2012). doi:10.1016/j.mce.2011.09.005;
pmid: 21939731
56. S. Hanet al., A non-canonical role for the proneural gene
Neurog1as a negative regulator of neocortical neurogenesis.
Development 145 , dev.157719 (2018). doi:10.1242/
dev.157719; pmid: 30201687
57. J. R. Rochester, A. L. Bolden, C. F. Kwiatkowski, Prenatal
exposure to bisphenol A and hyperactivity in children: A
systematic review and meta-analysis.Environ. Int. 114 ,
343 – 356 (2018). doi:10.1016/j.envint.2017.12.028;
pmid: 29525285
58. M. N. Grohset al., Prenatal maternal and childhood bisphenol
a exposure and brain structure and behavior of young
children.Environ. Health 18 , 85 (2019). doi:10.1186/s12940-
019-0528-9; pmid: 31615514
59. S. K. Witchey, J. Fuchs, H. B. Patisaul, Perinatal bisphenol A
(BPA) exposure alters brain oxytocin receptor (OTR)
expression in a sex- and region- specific manner: A CLARITY-
BPA consortium follow-up study.Neurotoxicology 74 ,
139 – 148 (2019). doi:10.1016/j.neuro.2019.06.007;
pmid: 31251963
60. V. Mustieleset al., Bisphenol A and its analogues: A
comprehensive review to identify and prioritize effect
biomarkers for human biomonitoring.Environ. Int. 144 ,
105811 (2020). doi:10.1016/j.envint.2020.105811;
pmid: 32866736
61. H. R. Willseyet al., Parallel in vivo analysis of large-effect
autism genes implicates cortical neurogenesis and estrogen
in risk and resilience.Neuron 109 , 788–804.e8 (2021).
doi:10.1016/j.neuron.2021.01.002; pmid: 33497602
62. S. Akbarianet al., The PsychENCODE project.Nat.
Neurosci. 18 , 1707–1712 (2015). doi:10.1038/nn.4156;
pmid: 26605881
63. A. Joet al., The versatile functions of Sox9 in development,
stem cells, and human diseases.Genes Dis. 1 , 149–161 (2014).
doi:10.1016/j.gendis.2014.09.004; pmid: 25685828
64. K.I.Vong,C.K.Y.Leung,R.R.Behringer,K.M.Kwan,
Sox9 is critical for suppression of neurogenesis but
not initiation of gliogenesis in the cerebellum.Mol. Brain
8 , 25 (2015). doi:10.1186/s13041-015-0115-0;
pmid: 25888505
65. W. Sunet al., SOX9 is an astrocyte-specific nuclear marker in
the adult brain outside the neurogenic regions.J. Neurosci.
37 , 4493–4507 (2017). doi:10.1523/JNEUROSCI.3199-
16.2017; pmid: 28336567
66. P. Selvarajet al., Neurotrophic factor-a1: A key Wnt-
b-catenin dependent anti-proliferation factor and ERK-
Sox9 activated inducer of embryonic neural stem cell
differentiation to astrocytes in neurodevelopment.Stem
Cells 35 , 557–571 (2017). doi:10.1002/stem.2511;
pmid: 27709799
67. N. N. Parikshaket al., Integrative functional genomic analyses
implicate specific molecular pathways and circuits in autism.
Cell 155 , 1008–1021 (2013). doi:10.1016/j.cell.2013.10.031;
pmid: 24267887
68. C. Gilissenet al., Genome sequencing identifies major causes
of severe intellectual disability.Nature 511 , 344–347 (2014).
doi:10.1038/nature13394; pmid: 24896178
69. S. Tuet al., NitroSynapsin therapy for a mouse MEF2C
haploinsufficiency model of human autism.Nat. Commun. 8 ,
1488 (2017). doi:10.1038/s41467-017-01563-8;
pmid: 29133852
70. R. J. Denver, K. E. Williamson, Identification of a thyroid
hormone response element in the mouse Kruppel-like factor
9 gene to explain its postnatal expression in the brain.
Endocrinology 150 , 3935–3943 (2009). doi:10.1210/
en.2009-0050; pmid: 19359381
71. F. Hu, J. R. Knoedler, R. J. Denver, A mechanism to enhance
cellular responsivity to hormone action: Krüppel-Like factor 9
promotes thyroid hormone receptor-bautoinduction during
postembryonic brain development.Endocrinology 157 ,
1683 – 1693 (2016). doi:10.1210/en.2015-1980;
pmid: 26886257
72. M. Maekawaet al., Polyunsaturated fatty acid deficiency
during neurodevelopment in mice models the prodromal
state of schizophrenia through epigenetic changes in nuclear
receptor genes.Transl. Psychiatry 7 , e1229 (2017).
doi:10.1038/tp.2017.182; pmid: 28872641
73. O. Baud, N. Berkane, Hormonal changes associated with
intra-uterine growth restriction: Impact on the developing
brain and future neurodevelopment.Front. Endocrinol.
(Lausanne) 10 , 179 (2019). doi:10.3389/fendo.2019.00179;
pmid: 30972026
74. T. Colborn, Neurodevelopment and endocrine disruption.
Environ. Health Perspect. 112 , 944–949 (2004). doi:10.1289/
ehp.6601; pmid: 15198913
75. The Signaling Pathways Project;www.signalingpathways.org/
index.jsf.
76. A. Ghassabian, L. Trasande, Disruption in thyroid signaling
pathway: A mechanism for the effect of endocrine-disrupting
chemicals on child neurodevelopment.Front. Endocrinol. 9 ,
204 (2018). doi:10.3389/fendo.2018.00204;
pmid: 29760680
77. R. M. Basnet, D. Zizioli, S. Taweedet, D. Finazzi,
M. Memo, Zebrafish larvae as a behavioral model in
neuropharmacology.Biomedicines 7 , 23 (2019).
doi:10.3390/biomedicines7010023; pmid: 30917585
78. K. G. Pratt, A. S. Khakhalin, Modeling human
neurodevelopmental disorders in theXenopustadpole: From
mechanisms to therapeutic targets.Dis. Model. Mech. 6 ,
1057 – 1065 (2013). doi:10.1242/dmm.012138;
pmid: 23929939
79. J. F. Rovet, The role of thyroid hormones for brain
development and cognitive function.Endocr. Dev. 26 , 26– 43
(2014). doi:10.1159/000363153; pmid: 25231442
80. S. Marshallet al., An empirical approach to sufficient similarity:
Combining exposure data and mixtures toxicology data.Risk Anal.
33 , 1582–1595 (2013). doi:10.1111/risa.12015; pmid: 23398277
81. OECD iLibrary, Test no. 248:Xenopuseleutheroembryonic
thyroid assay (XETA);www.oecd-ilibrary.org/environment/tg-
248-xenopus-eleutheroembryonic-thyroid-assay-
xeta_a13f80ee-en.
82. R. M. Califfet al., Transforming evidence generation to
support health and health care decisions.N. Engl. J. Med.
375 , 2395–2400 (2016). doi:10.1056/NEJMsb1610128;
pmid: 27974039
83. A. Peters, T. S. Nawrot, A. A. Baccarelli, Hallmarks of
environmental insults.Cell 184 , 1455–1468 (2021).
doi:10.1016/j.cell.2021.01.043; pmid: 33657411
84. M. Fisheret al., Bisphenol A and phthalate metabolite urinary
concentrations: Daily and across pregnancy variability.
J. Expo. Sci. Environ. Epidemiol. 25 , 231–239 (2015).
doi:10.1038/jes.2014.65; pmid: 25248937
85. L. E. Johns, G. S. Cooper, A. Galizia, J. D. Meeker, Exposure
assessment issues in epidemiology studies of phthalates.
Caporaleet al.,Science 375 , eabe8244 (2022) 18 February 2022 14 of 15
RESEARCH | RESEARCH ARTICLE