Advances in Risk Management

(Michael S) #1
JEAN-PAUL PAQUIN, ANNICK LAMBERT AND ALAIN CHARBONNEAU 295

To simplify the notation, let us defineαt=(1+kc)−t. Equation (1) becomes:


P ̃=

∑n

t= 1

αtε ̃t

We must therefore verify, in accordance with the CLT, whether this weighted average
of random error terms converges towards a normal probability distribution. Given our
initial assumptions we deduct:


E(P ̃)=

∑n

t= 1

αtE(ε ̃t)= 0

whereas


V(P ̃)=

∑n
t= 1

α^2 tV(ε ̃t)=

∑n
t= 1

α^2 t.

Therefore, to verify the CLT we must demonstrate that:


nlim→∞

∑n
t= 1

αt ̃εt

∑n
t= 1

α^2 t

→N(0, 1)

LetφX ̃(h)=E(eihX ̃)= 1 +

∑∞
t= 1
(ih)t
t!μtbe the characteristic function of any random vari-
ableX ̃. Given that theε ̃t’s are independent in probability, we may write the characteristic
function of their weighted sum in term of their argument as:


φ∑n
t= 1
αtε ̃t
√∑n
t= 1
α^2 t

(h)=E

(
e

ih√∑∑αt ̃εt
α^2 t

)
=

∏n

t= 1

e

√ihα∑tε ̃t
α^2 t=
∏n

t= 1

φ ̃ε


√αth

α^2 t




Let us take the logarithm of the characteristic function in term of its arguments and thus
define thefunction:


√∑αt ̃εt
∑α 2
t

=

∑n

t= 1

logφε ̃t




αth
√∑
α^2 t




=

∑n

t= 1

log


 1 +i√αt

α^2 t

hμ 1 −
1
2


√αt

α^2 t




2
h^2 μ 2


i
3!


√αt

α^2 t




3
h^3 μ 3 +
1
4!


√αt

α^2 t




4
h^4 μ 4 +...



Free download pdf