JEAN-PAUL PAQUIN, ANNICK LAMBERT AND ALAIN CHARBONNEAU 297Given that the cumulants of order higher than 2 generally are not equal to zero, it then
follows that:
nlim→∞√∑αtε ̃t
∑α 2
t=nlim→∞∑nt= 1logφ ̃ε
αth
√∑
α^2 t
=nlim→∞
−h^2
2
−
i
3!∑nt= 1
αt
√∑
α^2 t
3
h^3 K 3+
1
4!∑n
t= 1
αt
√∑
α^2 t
4
h^4 K 4 +...
=−h^2
2However, when the discount rate is set equal to zero then:
nlim→∞α^21
∑n
t= 1α^2 t=
1
nand the logarithm of the characteristic function in terms of its cumulants can be written as:
√∑αt ̃εt
∑α 2
t=∑n
t= 1logφε ̃(
αth
∑
α^2 t)
=−
h^2
2
−
i
3!∑n
t= 1(
1
√
n) 3
h^3 K 3+^1
4!∑nt= 1(
√^1
n) 4
h^4 K 4 +...Consequently, its limit value can be written as:
nlim→∞√∑αtε ̃t
∑α 2
t=nlim→∞∑nt= 1logφ ̃ε(
αth
∑
α^2 t)
=−
h^2
2and therefore limn→∞φ ̃ε
(
∑αth
α^2 t)
=e−
h 22
, which is the characteristic function of the Normalprobability distribution.
APPENDIX 2: THE CLT AND THE FIRST-ORDER
AUTOREGRESSIVE PROCESS
We consider a weighted sum of random cash flowsX ̃tsuch that each variate has an equal
weight. We thus define the random meanX ̃ ̄as the sum ofnequally weighted random
cash flowsX ̃tas:
X ̃ ̄=∑n
t= 1X ̃t
n
(A.1)for whichX ̃t=μX+ ̃εt, fort=1, 2, 3...,n.