Ceramic and Glass Materials
10 Zirconia 195
- M. Levichkova, V. Mankov, N. Starbov, D. Karashanova, B. Mednikarov, and K. Starbova,
Structure and properties of nanosized electron beam deposited zirconia thin films, Surf. Coat.
Technol. 141 , 70–77 (2001).
- T. Sakuma, Y.-I. Yoshizawa, and H. Suto, The microstructure and mechanical properties
of yttria-stabilized zirconia prepared by arc-melting, J. Mater. Sci. 20 , 2399–2407
(1985).
- G. Skandan, H. Hahn, M. Roddy, and W.R. Cannon, Ultrafine-grained dense monoclinic and
tetragonal zirconia, J. Am. Ceram. Soc. 77 (7), 1706–1710 (1994).
- J. Eichler, U. Eisele, and J. Rödel, Mechanical properties of monoclinic zirconia, J. Am. Ceram.
Soc. 87 (7), 1401–1403 (2004).
- Y.-M. Chiang, D. Birnie III, and W.D. Kingery, Physical Ceramics Principles for Ceramic
Science and Engineering, Wiley, New York, 1997, p. 484.
- D.W. Richerson, Modern Ceramic Engineering Properties, Processing, and Use in Design 3/e
Taylor and Francis Group, Boca Raton, 2006, pp. 275, 643.
- G. Stefanic and S. Music, Factors influencing the stability of low temperature tetragonal ZrO 2 ,
Croat. Chem. Acta 75 (3), 727–767 (2002).
- H.S. Maiti, K.V.G.K. Gokhale, and E.C. Subbarao, Kinetics and burst phenomenon in ZrO 2 trans-
formation,J. Am. Ceram. Soc. 55 (6), 317–322 (1972).
- A.H. Heuer, N. Claussen, W.M. Kriven, and M. Rühle, Stability of tetragonal ZrO 2 particles in
ceramic matrices, J. Am. Ceram. Soc. 65 (12), 642–650 (1982).
- M.H. Bocanegra-Bernal and S. Diaz De La Torre, Review. Phase transitions in zirconium dioxide
and related materials for high performance engineering materials, J. Mater. Sci. 37 , 4947–4971
(2002).
- A.G. Evans, N. Burlingame, M. Drory, and W.M. Kriven, Martensitic transformations in zirco-
nia–particle size effects and toughnening, Acta Metall. 29 , 447–456 (1981).
- A.G. Evans and A.H. Heuer, Review – Transformation toughening in ceramics: Martensitic trans-
formations in crack-tip stress fields, J. Am. Ceram. Soc. 63 (5–6), 241–248 (1980).
- D.W. Richerson, Modern Ceramic Engineering Properties, Processing, and Use in Design Taylor
and Francis Group, Boca Raton, 2006, pp. 635, 640–644.
- T.K. Gupta, F.F. Lange, and J.H. Bechtold, Effect of stress-induced phase transformation on the
properties of polycrystalline zirconia containing metastable tetragonal phase, J. Mater. Sci. 13 (7),
1464–1470 (1978).
- Y.-M. Chiang, D. Birnie III, and W.D. Kingery, Physical Ceramics Principles for Ceramic
Science and Engineering, Wiley, New York, 1997, pp. 488–492.
- M.J. Roddy, W.R. Cannon, G. Skandan, and H. Hahn, Creep behavior of nanocrystalline mono-
clinic ZrO 2 ,J. Eur. Ceram. Soc. 22 , 2657–2662 (2002).
- M. Yoshida, Y. Shinoda, T. Akatsu, and F. Wakai, Superplasticity-like deformation of
nanocrystalline monoclinic zirconia at elevated temperatures, J. Am. Ceram. Soc. 87 (6),
1122–1125 (2004).
- J.D. Comins, P.E. Ngoepe, and C.R.A. Catlow, Brillouin-scattering and computer-simulation
studies of fast-ion conductors. A review, J. Chem. Soc. Faraday Trans. 86 (8), 1183–1192
(1990).
- R.W. Vest and N.M. Tallan, Electrical properties and defect structure of zirconia: II, tetragonal
phase and inversion, J. Am. Ceram. Soc. 48 (9), 472–475 (1965).
- A. Kumar, D. Rajdev, and D.L. Douglass, Effect of oxide defect structure on the electrical proper-
ties of ZrO 2 ,J. Am. Ceram. Soc. 55 (9), 439–445 (1972).
- R.W. Vest, N.M. Tallan, and W.C. Tripp, Electrical properties and defect structure of zirconia: I,
monoclinic phase, J. Am. Ceram. Soc. 47 (12), 635–640 (1964).
- P. Kofstad and D.J. Ruzicka, On the defect structure of ZrO 2 and HfO 2 ,J. Electrochem. Soc.
110 (3), 181–184 (1963).
- E. Dow Whitney, Electrical resistivity and diffusionless phase transformation of zirconia at high tem-
peratures and ultrahigh pressures, J. Electrochem. Soc. 112 (1), 91–94 (1965).
- O. Ohtaka, S. Kume, and E. Ito, Stability field of cotunnite-type zirconia, J. Am. Ceram. Soc.
73 (3), 744–745 (1990).
- A. Madeyski and W.W. Smeltzer, Oxygen diffusion in monoclinic zirconia, Mater. Res. Bull. 3 ,
369–376 (1968).