J. Carlos Escanciano and Ignacio N. Lobato 9930 5 10 15 20 25 30 35–0.200.10.2AutocorrelogramLag j0 5 10 15 20 25 30 35
00.511.52Nonlinear IPRF plotLag jr(
j)KS (j)–0.1Figure 20.8 IPRF for the weekly pound
Top graph is the heteroskedasticity robust autocorrelation plot. Bottom graph is the IPRF plot.
and:
̂f0,w(&,x)=^1
2 π
̂γ0,w(x),to test the MDH, wherek(·)is a symmetric kernel andpa bandwidth parameter. He
considered a standardization of anL 2 -distance using a weighting functionW(·):
L^2 2,n(p)=
π
2∫R∫π−πn∣∣
∣̂fw(&,x)−̂f0,w(&,x)∣∣
∣2
W(dx)d& (20.9)=n∑− 1j= 1(n−j)k^2(
j
p)∫R∣∣
∣̂γj,w(x)∣∣
∣2
W(dx).Under the null of MDH and some additional assumptions, Hong and Lee (2005)
showed that a convenient standardization ofL^2 2,n(p)converges to a standard nor-
mal random variable. The centering and scaling factors in this standardization
depend on the higher dependence structure of the series.
Alternatively, the generalized spectral distribution function is:
Hw(λ,x)= 2λπ∫0fw(&,x)d&λ∈[0, 1],