796 Computational Considerations in Microeconometrics
Table 15.2 Hedonic prices of housing attributes: estimated models
(1) OLS (2) Semip. FGLS (3) Partially linear
Robust Efficient Robust
Coef. std. error Coef. std. error Coef. std. error
Intercept 73.978 18.367 77.821 5.821 – –
FIREPLAC 11.795 5.916 9.634 1.759 9.548 3.792
GARAGE 11.838 4.439 10.870 1.821 3.826 3.849
LUXBATH 60.736 10.351 58.821 4.205 44.329 10.820
AVGINC 0.477 0.199 0.502 0.059 −0.414 1.037
DISTHWY −15.277 5.596 −12.954 1.479 -23.079 32.358
LOTAREA 3.243 1.937 2.542 0.625 3.978 1.928
NRBED 6.586 4.484 4.276 1.439 1.668 3.222
USESPACE 21.128 12.070 27.125 4.043 17.767 7.059
WEST 3.206 1.884 2.931 0.702 – –
SOUTH −7.527 1.782 −7.254 0.527 – –
s 21.95 1.006 14.603
AdjustedR^2 0.569 0.947 0.847
Comp. time 0.64 seconds 196.62 seconds 127.17 seconds
Notes:srepresents the squared root of the estimated variance of the regression. FGLS = feasible
generalized least squares.
15.4.2.2 Example: partially linear model
The partially linear model specifiesE[y|z,x]=z$β+g(x), whereg(x)is left
unspecified, andz=[z 1 ,...,zp]∈Rp. In particular, assuming that, foru =
y−z$β−g(x),E[u|z,x]=0, and var(u|z,x)=σ^2 (z,x), and after observing that
E[y|x]=E[z|x]$β+g(x), Robinson (1988) proposed an estimator̂βthat requires
the nonparametric estimation ofE[yi|xi], andE[zi|xi],i=1,...,n, in:
̂β=(∑ni= 1 (zi−̂E[zi|xi])(zi−̂E[zi|xi])$)−^1 (∑ni= 1 (zi−̂E[zi|xi])(yi−̂E[yi|xi])),
(15.18)
by the Nadaraya–Watson estimator, i.e., for vectors of smoothing parametersh
andλ:
̂E[yi|xi]=
∑n
j= 1 yiK(x
c
i,x
c
j;h)L(x
d
i,x
d
j;λ)
∑n
j= 1 L(x
d
i,x
d
j;λ)
, (15.19)
̂E[zl;i|xi]=
∑n
j= 1 zl;iK(x
c
i,x
c
j;h)L(x
d
i,x
d
j;λ)
∑n
j= 1 L(x
d
i,x
d
j;λ)
, forl=1,...,p. (15.20)
Its asymptotic variance can be estimated consistently by:
asy. var̂(̂β)=n−^1 ̂#−^1 ̂#̂−^1 , (15.21)