Palgrave Handbook of Econometrics: Applied Econometrics

(Grace) #1

860 Macroeconometric Modeling for Policy


Lettingyt≡(rw−βz)tandxt≡ztthen gives:


rwt=−ac+a(rw−βz)t− 1 +
a
2


%(rw−βz)t− 1 +βzt−ab%zt− 1 −
ab
2

^2 zt− 1 +···.

17.2.4 System representations


The approach easily generalizes to a system representation. For ease of exposition,
we illustrate the two-dimensional case for whichy 1 →y ̄ 1 andy 2 →y ̄ 2 ast→∞.
Expanding with respect toy 1 andy 2 about their steady-state values yields:



⎢⎣


f 1

(
y 1 ,y 2

)

f 2

(
y 1 ,y 2

)


⎥⎦=


⎢⎣

f 1

(
y ̄ 1 ,y ̄ 2

)

f 2

(
y ̄ 1 ,y ̄ 2

)


⎥⎦+


⎢⎢

∂f 1 (y ̄ 1 ,y ̄ 2 )
∂y 1

∂f 1 (y ̄ 1 ,y ̄ 2 )
∂y 2
∂f 2 (y ̄ 1 ,y ̄ 2 )
∂y 1

∂f 2 (y ̄ 1 ,y ̄ 2 )
∂y 2


⎥⎥


⎢⎣

y 1 −y ̄ 1

y 2 −y ̄ 2


⎥⎦+


⎢⎣

R 1

R 2


⎥⎦,

where[R 1 ,R 2 ]′denotes the vector:


1
2!


⎢⎢
⎢⎢

∂^2 f 1 (ζ,η)
∂y^21

(
y 1 −y ̄ 1

) 2
+ 2
∂^2 f 1 (ζ,η)
∂y 1 ∂y 2

(
y 1 −y ̄ 1

)(
y 2 −y ̄ 2

)
+
∂^2 f 1 (ζ,η)
∂y^22

(
y 2 −y ̄ 2

) 2

∂^2 f 2 (ζ,η)
∂y^21

(
y 1 −y ̄ 1

) 2
+ 2
∂^2 f 2 (ζ,η)
∂y 1 ∂y 2

(
y 1 −y ̄ 1

)(
y 2 −y ̄ 2

)
+
∂^2 f 2 (ζ,η)
∂y 22

(
y 2 −y ̄ 2

) 2


⎥⎥
⎥⎥

,

so that: ⎡




∂y 1
∂t
∂y 2
∂t



⎦=




α 11 α 12

α 21 α 22







y 1 −y ̄ 1

y 2 −y ̄ 2



⎦+




R 1

R 2



⎦.

The backward-difference approximation to the solution of the system of differential
equations gives the system in EqCM form (see Bårdsen, Hurn and Lindsay, 2004,
for details), namely:


[
%y 1
%y 2

]

t

=

[
−α 11 c 1
−α 22 c 2

]
+

[
α 11 0
0 α 22

][
y 1 −δ 1 y 2
y 2 −δ 2 y 1

]

t− 1

+


⎢⎣

R 1

R 2


⎥⎦

t− 1

+
1
2

[
α 11 α 12
α 21 α 22

][
y 1
y 2

]

t− 1

+




R 1

R 2




t− 1

+
5
12

[
α 11 α 12
α 21 α 22

][
^2 y 1
^2 y 2

]

t− 1

+


⎢⎢

^2 R 1

^2 R 2


⎥⎥

t− 1

+
3
8

[
α 11 α 12
α 21 α 22

][
^3 y 1
^3 y 2

]

t− 1

+


⎢⎢

^3 R 1

^3 R 2


⎥⎥

t− 1

+···,
Free download pdf