860 Macroeconometric Modeling for Policy
Lettingyt≡(rw−βz)tandxt≡ztthen gives:
rwt=−ac+a(rw−βz)t− 1 +
a
2
%(rw−βz)t− 1 +βzt−ab%zt− 1 −
ab
2
^2 zt− 1 +···.
17.2.4 System representations
The approach easily generalizes to a system representation. For ease of exposition,
we illustrate the two-dimensional case for whichy 1 →y ̄ 1 andy 2 →y ̄ 2 ast→∞.
Expanding with respect toy 1 andy 2 about their steady-state values yields:
⎡
⎢⎣
f 1
(
y 1 ,y 2
)
f 2
(
y 1 ,y 2
)
⎤
⎥⎦=
⎡
⎢⎣
f 1
(
y ̄ 1 ,y ̄ 2
)
f 2
(
y ̄ 1 ,y ̄ 2
)
⎤
⎥⎦+
⎡
⎢⎢
⎣
∂f 1 (y ̄ 1 ,y ̄ 2 )
∂y 1
∂f 1 (y ̄ 1 ,y ̄ 2 )
∂y 2
∂f 2 (y ̄ 1 ,y ̄ 2 )
∂y 1
∂f 2 (y ̄ 1 ,y ̄ 2 )
∂y 2
⎤
⎥⎥
⎦
⎡
⎢⎣
y 1 −y ̄ 1
y 2 −y ̄ 2
⎤
⎥⎦+
⎡
⎢⎣
R 1
R 2
⎤
⎥⎦,
where[R 1 ,R 2 ]′denotes the vector:
1
2!
⎡
⎢⎢
⎢⎢
⎣
∂^2 f 1 (ζ,η)
∂y^21
(
y 1 −y ̄ 1
) 2
+ 2
∂^2 f 1 (ζ,η)
∂y 1 ∂y 2
(
y 1 −y ̄ 1
)(
y 2 −y ̄ 2
)
+
∂^2 f 1 (ζ,η)
∂y^22
(
y 2 −y ̄ 2
) 2
∂^2 f 2 (ζ,η)
∂y^21
(
y 1 −y ̄ 1
) 2
+ 2
∂^2 f 2 (ζ,η)
∂y 1 ∂y 2
(
y 1 −y ̄ 1
)(
y 2 −y ̄ 2
)
+
∂^2 f 2 (ζ,η)
∂y 22
(
y 2 −y ̄ 2
) 2
⎤
⎥⎥
⎥⎥
⎦
,
so that: ⎡
⎢
⎣
∂y 1
∂t
∂y 2
∂t
⎤
⎥
⎦=
⎡
⎢
⎣
α 11 α 12
α 21 α 22
⎤
⎥
⎦
⎡
⎢
⎣
y 1 −y ̄ 1
y 2 −y ̄ 2
⎤
⎥
⎦+
⎡
⎢
⎣
R 1
R 2
⎤
⎥
⎦.
The backward-difference approximation to the solution of the system of differential
equations gives the system in EqCM form (see Bårdsen, Hurn and Lindsay, 2004,
for details), namely:
[
%y 1
%y 2
]
t
=
[
−α 11 c 1
−α 22 c 2
]
+
[
α 11 0
0 α 22
][
y 1 −δ 1 y 2
y 2 −δ 2 y 1
]
t− 1
+
⎡
⎢⎣
R 1
R 2
⎤
⎥⎦
t− 1
+
1
2
[
α 11 α 12
α 21 α 22
][
y 1
y 2
]
t− 1
+
⎡
⎢
⎣
R 1
R 2
⎤
⎥
⎦
t− 1
+
5
12
[
α 11 α 12
α 21 α 22
][
^2 y 1
^2 y 2
]
t− 1
+
⎡
⎢⎢
⎣
^2 R 1
^2 R 2
⎤
⎥⎥
⎦
t− 1
+
3
8
[
α 11 α 12
α 21 α 22
][
^3 y 1
^3 y 2
]
t− 1
+
⎡
⎢⎢
⎣
^3 R 1
^3 R 2
⎤
⎥⎥
⎦
t− 1
+···,