180 9 Fundamental Theorem of Asset Pricing
(R ̃k·S)t=(Rk·S)t
=(Rk·A)t+(Rk·M)t
≥max
(
(Lik·A)t,(Ljk·A)t
)
+(Rk·M)t
≥max
(
(Lik·A)t,(Ljk·A)t
)
+max
(
(Lik·M)t,(Ljk·M)t
)
−δk
≥max
(
(Lik·S)t,(Ljk·S)t
)
−δk
≥− 1 −δk.
At timeτkthe jump ∆(R ̃k·S)iseither∆(Lik·S)or∆(Ljk·S)and
hence (Rk·S)τk≥− 1 −δkbecause the left limit of (R ̃k·S)atτkis at least
max((Lik·S)τk−,(Ljk·S)τk−)−δk.
The integrands (1 +δk)−^1 R ̃kare 1-admissible. We will use them to con-
struct a contradiction to the maximal property off 0 = limk→∞(Ljk·S)∞=
limm→∞(Hm·S)∞.
(
R ̃k
1+δk
·S−Lik·S
)
∞
=
1
1+δk
(
(R ̃k−Lik)·S
)
∞−
δk
1+δk
(Lik·S)∞
=
(
1
1+δk
)
(
(R ̃k−Lik)·A
)
∞
+
1
1+δk
(
(R ̃k−Lik)·M
)
∞−
δk
1+δk
(Lik·S)∞.
This first term is estimated from below
Q
[(
(R ̃k−Lik)·A
)
∞>
α
2
]
>
α
2
and
(
(R ̃k−Lik)·A
)
∞≥^0.
The second term is estimated from above
Q
[(
(R ̃k−Lik)·M
)
∞≤−δk
]
<δkand
(
(R ̃k−Lik)·M
)
∞→^0.
The third term tends to zero sinceδk→0. From Lemma 9.8.1 we know
that there are convex combinationsVk∈conv{R ̃k,R ̃k+1,...}such that (Vk·
S)∞will converge to a functiong. Because (Lik·S)∞→f 0 and because
Q
[
((R ̃k−Lik)·S)∞>α 2 −δk
]
>α 2 −δkwe deduce from Lemma 9.8.6 that
Q[g>f 0 ]>0. Alsog≥f 0 , a contradiction to the construction off 0.
Final part of the proof of Theorem 9.4.2.From Lemmas 9.4.12 and 9.4.11
we deduce the existence of 1-admissible integrandsLk∈conv{Hk,Hk+1,...}
such thatLk·MandLk·Aboth converge in the semi-martingale topology. The
sequence (Lk·S)k≥ 1 is therefore convergent in the semi-martingale topology.
M ́emin’s theorem (see [M 80]) now implies the existence of a predictable pro-
cessLsuch thatLk·S→L·Sin the semi-martingale topology. In particular
Lis 1-admissible and the final value satisfies