9.7 Simple Integrands 201
min((Lj·S)m,1)−min((Lj·S)m− 1 ,1)≤(Lj·S)m−(Lj·S)m− 1.
The processLjis bounded in intervals [0,m] and becauseSis also uniformly
bounded with only one jump in each interval [k, k+ 1], the semi-martingale
Lj·Sis locally bounded, therefore special and decomposed asLj·S=Lj·
M+Lj·A. The local martingale part is a square integrable martingale and
hence:
EP[(Lj·M)m−(Lj·M)m− 1 ]=0.
This yields the following estimates:
EP[min((Lj·S)m,1)−min((Lj·S)m− 1 ,1)]
≤EP[(Lj·S)m−(Lj·S)m− 1 ]
≤EP[(Lj·A)m−(Lj·A)m− 1 ]
≤EP
[∫
]m− 1 ,m]
Ljuαmm^2 du
]
≤ 2 m+1m^2 αm.
This implies that
EP[min((Lj·S)m 0 ,1)]
≥EP[min((Lj·S)∞,1)]−
∑
m>m 0
2 m+1m^2 αm
≥EP[min((Lj·S)∞,1)]−
βm 0
2 m 0
(by the choice ofαm).
Because
lim inf
j→∞
EP[min((Lj·S)∞,1)]>
2
m 0
we can deduce that
lim inf
j→∞
EP[min((Lj·S)m 0 ,1)]>
2
m 0
−
βm 0
2 m 0
>
1
m 0
.
We may now suppose thatEP[min((Lj·S)m 0 ,1)]>m^10 for allj. Because of
the choice ofβmwe also see that
EP[min((Lj·S)−m 0 ,1)]
≥βmEP[min((Lj·S)+m 0 ,1)]≥βmEP[min((Lj·S)m 0 ,1)]>
βm
m 0
.
Let the setAjbe defined asAj={(Lj·S)m 0 < 0 }.
Because lim infj→∞min((Lj·S)∞,1) ≥ min(f 0 ,1) we also have that
lim infj→∞( (^1) Ajmin((Lj·S)∞,1))≥lim infj→∞( (^1) Ajmin(f 0 ,1)).
An application of Fatou’s lemma yields that