42 3 Utility Maximisation on Finite Probability Spaces
u(x)= sup
H∈H
E[U(x+(H·S)T)] = sup
XT∈C(x)
E[U(XT)].
The Lagrangian now is given by
L(ξ 1 ,...,ξN,η 1 ,...,ηM)
=
∑N
n=1
pnU(ξn)−
∑M
m=1
ηm
(N
∑
n=1
qmnξn−x
)
=
∑N
n=1
pn
(
U(ξn)−
∑M
m=1
ηmqnm
pn
ξn
)
+
∑M
m=1
ηmx,
where (ξ 1 ,...,ξN)∈dom(U)N, (η 1 ,...,ηM)∈RM+.
Writingy=η 1 +···+ηM,μm=ηym,μ=(μ 1 ,...,μM)and
Qμ=
∑M
m=1
μmQm,
note that, when (η 1 ,...,ηM) runs troughRM+, the pairs (y,Qμ) run through
R+×Ma(S). Hence we may write the Lagrangian as
L(ξ 1 ,...,ξN,y,Q)=EP[U(XT)]−y(EQ[XT−x]) (3.26)
=
∑N
n=1
pn
(
U(ξn)−
yqn
pn
ξn
)
+yx,
whereξn∈dom(U),y>0,Q=(q 1 ,...,qN)∈Ma(S).
This expression is entirely analogous to (3.5), the only difference now be-
ing thatQruns through the setMa(S) instead of being a fixed probability
measure. Defining again
Φ(ξ 1 ,...,ξn) = inf
y> 0 ,Q∈Ma(S)
L(ξ 1 ,...,ξN,y,Q),
and
Ψ(y,Q)= sup
ξ 1 ,...,ξN
L(ξ 1 ,...,ξN,y,Q),
we obtain, just as in the complete case,
sup
ξ 1 ,...,ξN
Φ(ξ 1 ,...,ξN)=u(x),x∈dom(U),
and
Ψ(y,Q)=
∑N
n=1
pnV
(
yqn
pn
)
+yx, y > 0 , Q∈Ma(S),