3.3 The Binomial and the Trinomial Model 47
X̂ 1 (x)=−V′
(
ŷ(x)
dQ
dP
)
=−V′(U′(x))c
α^1 − 1
U
(
dQ
dP
)α−^11
,
=xc−V^1
(
dQ
dP
)α^1 − 1
,
wherewehaveused−V′=(U′)−^1 andV′(y)=−y
α^1 − 1
. Hence
X̂ 1 (x)=
⎧
⎪⎨
⎪⎩
xc−V^1
(
− 2 d ̃
̃u−d ̃
)α^1 − 1
=xc−V^1 (2q)
α^1 − 1
, forω=g,
xc−V^1
(
2 ̃u
̃u−d ̃
)α (^1) − 1
=xc−V^1 (2(1−q))
1
α− (^1) ,forω=b.
Let us explicitly verify thatX̂ 1 (x) is indeed of the form
X̂ 1 (x)=x+̂h∆S 11 , (3.36)
for somêh∈R, or, equivalently, thatEQ[X 1 (x)] =x. Indeed:
EQ
[
X̂ 1 (x)
]
=x
(
1
2
(
(2q)
αα− 1
+(2(1−q))
αα− 1 )
)− 1
·
[
q(2q)
α^1 − 1
+(1−q)(2(1−q))
α^1 − 1 ]
=x
To calculatêhexplicitly we may apply (3.36), e.g., forω=gto obtain
x+̂hu ̃=xc−V^1 (2q)
α−^11
which yields
̂h=x
[
c−V^1 (2q)
1
α− (^1) − 1
]
̃u−^1. (3.37)
In the special case ofα =^12 (so thatβ = αα− 1 =−1andβ−1=
1
α− 1 = −2) the constants become somewhat nicer: (2q)
α^1 − 1
=^14
(
u ̃−d ̃
d ̃
) 2
,
cV=^12
(
̃u−d ̃
− 2 d ̃+
u ̃−d ̃
2 u ̃
)
=−( ̃u−
d ̃)^2
4 ̃ud ̃ so that
̂h=x
[
− 4 ̃ud ̃
(u ̃−d ̃)^2
·
1
4
(u ̃−d ̃)^2
d ̃^2
− 1
]
̃u−^1
=x
̃u+d ̃
| ̃ud ̃|