The Mathematics of Arbitrage

(Tina Meador) #1
3.3 The Binomial and the Trinomial Model 47

X̂ 1 (x)=−V′

(


ŷ(x)

dQ
dP

)


=−V′(U′(x))c
α^1 − 1
U

(


dQ
dP

)α−^11
,

=xc−V^1

(


dQ
dP

)α^1 − 1
,

wherewehaveused−V′=(U′)−^1 andV′(y)=−y
α^1 − 1


. Hence


X̂ 1 (x)=


⎪⎨


⎪⎩


xc−V^1

(


− 2 d ̃
̃u−d ̃

)α^1 − 1
=xc−V^1 (2q)
α^1 − 1
, forω=g,

xc−V^1

(


2 ̃u
̃u−d ̃

)α (^1) − 1
=xc−V^1 (2(1−q))
1
α− (^1) ,forω=b.
Let us explicitly verify thatX̂ 1 (x) is indeed of the form
X̂ 1 (x)=x+̂h∆S 11 , (3.36)
for somêh∈R, or, equivalently, thatEQ[X 1 (x)] =x. Indeed:
EQ


[


X̂ 1 (x)

]


=x

(


1


2


(


(2q)
αα− 1
+(2(1−q))
αα− 1 )

)− 1


·


[


q(2q)
α^1 − 1
+(1−q)(2(1−q))
α^1 − 1 ]
=x

To calculatêhexplicitly we may apply (3.36), e.g., forω=gto obtain

x+̂hu ̃=xc−V^1 (2q)
α−^11

which yields
̂h=x


[


c−V^1 (2q)

1

α− (^1) − 1


]


̃u−^1. (3.37)

In the special case ofα =^12 (so thatβ = αα− 1 =−1andβ−1=
1
α− 1 = −2) the constants become somewhat nicer: (2q)
α^1 − 1
=^14

(


u ̃−d ̃
d ̃

) 2


,


cV=^12


(


̃u−d ̃
− 2 d ̃+

u ̃−d ̃
2 u ̃

)


=−( ̃u−
d ̃)^2
4 ̃ud ̃ so that

̂h=x

[


− 4 ̃ud ̃
(u ̃−d ̃)^2

·


1


4


(u ̃−d ̃)^2
d ̃^2

− 1


]


̃u−^1

=x

̃u+d ̃
| ̃ud ̃|

.

Free download pdf