3.3 The Binomial and the Trinomial Model 49In the special caseα=^12 ,β=−1, this yieldŝh=^2 xν
σ^2+O
(
∆t12 )
.
We observe from (3.41) that, for fixedν>0,σ>0, the factor̂k=(1−β)ν
σ^2(3.42)
ranges between 0 and∞asβruns through ]−∞,1[{ 0 }(the caseβ=0
corresponding to the logarithmic utilityU(x) = log(x)).
For the optimal portfolioX̂ 1 (x) we thus find
X̂ 1 (x)=⎧
⎨
⎩
x(
1+ν(βσ−1)∆t12 )
+O(∆t),forω=g,
x(
1 −ν(βσ−1)∆t12 )
+O(∆t),forω=b.(3.43)
Regarding the logarithmic and exponential utility we only report the re-
sults and leave the derivation, which is entirely analogous to the above, as
exercises.
Example 3.3.2.Under the same assumptions onSas in 3.3.1, but with let-
tingU(x) = ln(x), we obtainV(y)=−ln(y)−1,
v(y)=−ln(y)−1+c 1 ,wherec 1 =−ln 2−^12 ln(q(1−q)), so that
u(x) = ln(x)+c 1.For the optimal investment, we obtainX̂ 1 (x)={
x
2 q, forω=g,
x
2(1−q),forω=b,so thatX̂ 1 (x)=x+̂h∆S 1 , where the optimal trading strategŷhis given by
̂h=x^1 −^2 q
2 q ̃u=x̃u+d ̃
− 2 d ̃ ̃u. (3.44)
Example 3.3.3.Using again the assumptions onSas in 3.3.1, but letting
nowU(x)=−exp(−x), we obtainV(y)=y(ln(y)−1) and
v(y)=V(y)−c 2 y, u(x)=−exp(−(x−c 2 ))wherec 2 =−[qlnq+(1−q)ln(1−q) + ln 2].