Contents ix
42.3 Further worked problems on thet=tan
θ
2
substitution 416Revision Test 12 41943 Integration by parts 420
43.1 Introduction 420
43.2 Worked problems on integration by parts 420
43.3 Further worked problems on integration
by parts 422
44 Reduction formulae 426
44.1 Introduction 426
44.2 Using reduction formulae for integrals of
the form
∫
xnexdx 426
44.3 Using reduction formulae for integrals of
the form∫
xncosxdxand∫
xnsinxdx 427
44.4 Using reduction formulae for integrals of
the form∫
sinnxdxand∫
cosnxdx 429
44.5 Further reduction formulae 43245 Numerical integration 435
45.1 Introduction 435
45.2 The trapezoidal rule 435
45.3 The mid-ordinate rule 437
45.4 Simpson’s rule 439
Revision Test 13 44346 Solution of first order differential equations by
separation of variables 444
46.1 Family of curves 444
46.2 Differential equations 445
46.3 The solution of equations of the form
dy
dx
=f(x) 445
46.4 The solution of equations of the form
dy
dx
=f(y) 447
46.5 The solution of equations of the form
dy
dx
=f(x)·f(y) 44947 Homogeneous first order differential equations 452
47.1 Introduction 452
47.2 Procedure to solve differential equations
of the formP
dy
dx
=Q 452
47.3 Worked problems on homogeneous first
order differential equations 452
47.4 Further worked problems on homogeneous
first order differential equations 45448 Linear first order differential equations 456
48.1 Introduction 456
48.2 Procedure to solve differential equations
of the form
dy
dx
+Py=Q 457
48.3 Worked problems on linear first order
differential equations 457
48.4 Further worked problems on linear first
order differential equations 45849 Numerical methods for first order differential
equations 461
49.1 Introduction 461
49.2 Euler’s method 461
49.3 Worked problems on Euler’s method 462
49.4 An improved Euler method 466
49.5 The Runge-Kutta method 471Revision Test 14 47650 Second order differential equations of the form
a
d^2 y
dx^2+b
dy
dx+cy= 0 47750.1 Introduction 477
50.2 Procedure to solve differential equations
of the formad^2 y
dx^2
+bdy
dx
+cy= 0 478
50.3 Worked problems on differential equations
of the formad^2 y
dx^2
+bdy
dx
+cy= 0 478
50.4 Further worked problems on practical
differential equations of the form
a
d^2 y
dx^2+b
dy
dx
+cy= 0 48051 Second order differential equations of the form
a
d^2 y
dx^2+b
dy
dx+cy=f(x) 48351.1 Complementary function and particular
integral 483
51.2 Procedure to solve differential equations
of the forma
d^2 y
dx^2
+b
dy
dx
+cy=f(x) 483
51.3 Worked problems on differential equations
of the forma
d^2 y
dx^2
+b
dy
dx
+cy=f(x)
wheref(x)is a constant or polynomial 484
51.4 Worked problems on differential equations
of the formad^2 y
dx^2
+bdy
dx
+cy=f(x)
wheref(x)is an exponential function 486
51.5 Worked problems on differential equations
of the forma
d^2 y
dx^2+b
dy
dx+cy=f(x)
wheref(x)is a sine or cosine function 488