Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

Introduction to trigonometry 99


(vi) cotangentθ=

adjacent side
opposite side

i.e. cotθ=

a
b



c
b

a

Figure 11.6


(b) From above,

(i)

sinθ
cosθ

=

b
c
a
c

=

b
a

=tanθ,

i.e. tanθ=

sinθ
cosθ

(ii)

cosθ
sinθ

=

a
c
b
c

=

a
b

=cotθ,

i.e. cotθ=

cosθ
sinθ

(iii) secθ=

1
cosθ

(iv) cosecθ=

1
sinθ
(Note ‘s’and‘c’ go together)

(v) cotθ=

1
tanθ
Secants, cosecants and cotangents are called the
reciprocal ratios.


Problem 3. If cosX=

9
41

determine the value of
the other five trigonometry ratios.

Fig. 11.7 shows a right-angled triangleXY Z.


Y

Z

X 9

41

Figure 11.7


Since cosX=

9
41

,thenXY=9 units and
XZ=41 units.
Using Pythagoras’ theorem: 41^2 = 92 +YZ^2 from
whichYZ=


( 412 − 92 )=40 units.
Thus

sinX=

40
41

,tanX=

40
9

= 4

4
9

,

cosecX=

41
40

= 1

1
40

,

secX=

41
9

= 4

5
9

andcotX=

9
40
Problem 4. If sinθ= 0 .625 and cosθ= 0. 500
determine, without using trigonometric tables or
calculators, the values of cosecθ,secθ,tanθ
and cotθ.

cosecθ=

1
sinθ

=

1
0. 625

=1.60

secθ=

1
cosθ

=

1
0. 500

=2.00

tanθ=

sinθ
cosθ

=

0. 625
0. 500

=1.25

cotθ=

cosθ
sinθ

=

0. 500
0. 625

=0.80

Problem 5. PointAlies at co-ordinate (2, 3) and
pointBat (8, 7). Determine (a) the distanceAB,
(b) the gradient of the straight lineAB, and (c) the
angleABmakes with the horizontal.

(a) PointsAandBare shown in Fig. 11.8(a).
In Fig. 11.8(b), the horizontal and vertical lines
ACandBCare constructed.
Since ABC is a right-angled triangle, and
AC=( 8 − 2 )=6andBC=( 7 − 3 )=4, then by
Pythagoras’ theorem

AB^2 =AC^2 +BC^2 = 62 + 42
and AB=


( 62 + 42 )=


52 =7.211,
correct to 3 decimal places.
(b) The gradient ofABisgivenbytanA,

i.e.gradient=tanA=

BC
AC

=

4
6

=

2
3

(c) TheangleABmakeswiththehorizontalisgiven
by tan−^123 =33.69◦.
Free download pdf