Chapter 14
Trigonometric waveforms
14.1 Graphs of trigonometric functions
By drawing up tables of values from 0◦to 360◦, graphs
ofy=sinA,y=cosAandy=tanAmay be plotted.
Values obtained with a calculator (correct to 3 deci-
mal places—which is more than sufficient for plotting
graphs), using 30◦intervals, are shown below, with the
respective graphs shown in Fig. 14.1.
(a)y=sinA
A 0 30 ◦ 60 ◦ 90 ◦ 120 ◦ 150 ◦ 180 ◦sinA 0 0.500 0.866 1.000 0.866 0.500 0A 210 ◦ 240 ◦ 270 ◦ 300 ◦ 330 ◦ 360 ◦sinA−0.500−0.866−1.000−0.866−0.500 0(b)y=cosA
A 0 30 ◦ 60 ◦ 90 ◦ 120 ◦ 150 ◦ 180 ◦cosA 1.0000.8660.500 0 −0.500−0.866−1.000A 210 ◦ 240 ◦ 270 ◦ 300 ◦ 330 ◦ 360 ◦cosA −0.866 −0.500 0 0.500 0.866 1.000(c)y=tanA
A 0 30 ◦ 60 ◦ 90 ◦ 120 ◦ 150 ◦ 180 ◦tanA 0 0.577 1.732 ∞ −1.732 −0.577 0A 210 ◦ 240 ◦ 270 ◦ 300 ◦ 330 ◦ 360 ◦tanA 0.577 1.732 ∞ −1.732 −0.577 01.02 1.0242 0.5
2 1.0220.52 0.50 30 60 90 120 150 180 210 240 270 300 330 36030 60 90 120 180 210 240 270 300 36030 60 90 120 150 180 210 240 270 300 330 360(a)1.0
0.50(b)(c)
4
20150 330yyyy 5 sin Ay 5 tan Ay 5 cos AA 8A 8A 8Figure 14.1From Fig. 14.1 it is seen that:
(i) Sine and cosine graphs oscillate between peak
values of±1.
(ii) The cosine curve is the same shape as the sine
curve but displaced by 90◦.
(iii) The sine and cosine curves are continuous and
they repeat at intervals of 360◦; the tangent