144 Higher Engineering Mathematics
α, and a graph ofy=sin(ωt+α)leadsy=sinωtby
angleα.
(The angle ωt is measured in radians (i.e.
ωrad
s)
(ts)=ωtradians) hence angleαshould also
be in radians.
The relationship between degrees and radians is:360 ◦= 2 πradians or 180 ◦=πradiansHence 1 rad=180
π= 57. 30 ◦ and, for example,71 ◦= 71 ×π
180= 1 .239rad.
Given a general sinusoidal function
y=Asin(ωt±α),then
(i) A=amplitude
(ii) ω=angular velocity= 2 πfrad/s(iii)2 π
ω=periodic timeTseconds(iv)ω
2 π=frequency, fhertz(v) α=angle of lead or lag (compared with
y=Asinωt)Problem 14. An alternating current is given by
i=30 sin( 100 πt+ 0. 27 )amperes. Find the
amplitude, periodic time, frequency and phase
angle (in degrees and minutes).i=30sin( 100 πt+ 0. 27 )A, henceamplitude=30A
Angular velocityω= 100 π, henceperiodic time,T=2 π
ω=2 π
100 π=1
50
=0.02sor20msFrequency, f=1
T=1
0. 02=50HzPhase angle,α= 0 .27rad=(
0. 27 ×180
π)◦=15.47◦or 15 ◦ 28 ′leadingi=30sin(100πt)Problem 15. An oscillating mechanism has a
maximum displacement of 2.5m and a frequency of
60Hz. At timet=0 the displacement is 90cm.
Express the displacement in the general form
Asin(ωt±α).Amplitude=maximum displacement= 2 .5m.
Angular velocity,ω= 2 πf= 2 π( 60 )= 120 πrad/s.
Hence displacement= 2 .5sin( 120 πt+α)m.
Whent=0, displacement=90cm= 0 .90m.Hence 0. 90 = 2 .sin( 0 +α)i.e. sinα=^0.^90
2. 5= 0. 36Hence α=arcsin0. 36 = 21. 10 ◦= 21 ◦ 6 ′
= 0 .368radThusdisplacement=2.5 sin(120πt+0.368)mProblem 16. The instantaneous value of voltage
in an a.c. circuit at any timetseconds is given by
v=340sin( 50 πt− 0. 541 )volts. Determine:
(a) the amplitude, periodic time, frequency and
phase angle (in degrees)
(b) the value of the voltage whent= 0
(c) the value of the voltage whent=10ms
(d) the time when the voltage first reaches
200V, and
(e) the time when the voltage is a maximum.
Sketch one cycle of the waveform.(a) Amplitude=340V
Angular velocity,ω= 50 πHenceperiodic time,T=2 π
ω=2 π
50 π=1
25=0.04sor40msFrequency,f=1
T=1
0. 04= 25 HzPhase angle= 0 .541rad=(
0. 541 ×180
π)= 31 ◦laggingv=340sin( 50 πt)(b) Whent= 0 ,v=340sin( 0 − 0. 541 )=340sin(− 31 ◦)
=−175.1V