Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

Trigonometric identities and equations 153


theright-handside(RHS)orvice-versa.It isoftenuseful
to change all of the trigonometric ratios into sines and
cosines where possible. Thus,


LHS=sin^2 θcotθsecθ

=sin^2 θ

(
cosθ
sinθ

)(
1
cosθ

)

=sinθ(by cancelling)=RHS

Problem 2. Prove that
tanx+secx

secx

(
1 +

tanx
secx

)= 1.

LHS=

tanx+secx

secx

(
1 +

tanx
secx

)

=

sinx
cosx

+

1
cosx
(
1
cosx

)



⎝^1 +

sinx
cosx
1
cosx




=

sinx+ 1
( cosx
1
cosx

)[
1 +

(
sinx
cosx

)(
cosx
1

)]

=

sinx+ 1
( cosx
1
cosx

)
[1+sinx]

=

(
sinx+ 1
cosx

)(
cosx
1 +sinx

)

=1(by cancelling)=RHS

Problem 3. Prove that

1 +cotθ
1 +tanθ

=cotθ.

LHS=

1 +cotθ
1 +tanθ

=

1 +

cosθ
sinθ
1 +

sinθ
cosθ

=

sinθ+cosθ
sinθ
cosθ+sinθ
cosθ

=

(
sinθ+cosθ
sinθ

)(
cosθ
cosθ+sinθ

)

=

cosθ
sinθ

=cotθ=RHS

Problem 4. Show that
cos^2 θ−sin^2 θ= 1 −2sin^2 θ.

From equation (2), cos^2 θ+sin^2 θ=1, from which,
cos^2 θ= 1 −sin^2 θ.

Hence,LHS
=cos^2 θ−sin^2 θ=( 1 −sin^2 θ)−sin^2 θ
= 1 −sin^2 θ−sin^2 θ= 1 −2sin^2 θ=RHS

Problem 5. Prove that
√(
1 −sinx
1 +sinx

)
=secx−tanx.

LHS=

√(
1 −sinx
1 +sinx

)
=

√{
( 1 −sinx)( 1 −sinx)
( 1 +sinx)( 1 −sinx)

}

=

√{
( 1 −sinx)^2
( 1 −sin^2 x)

}

Since cos^2 x+sin^2 x=1then1−sin^2 x=cos^2 x

LHS=

√{
( 1 −sinx)^2
( 1 −sin^2 x)

}
=

√{
( 1 −sinx)^2
cos^2 x

}

=

1 −sinx
cosx

=

1
cosx


sinx
cosx
=secx−tanx=RHS

Now try the following exercise

Exercise 65 Further problemson
trigonometric identities
In Problems 1 to 6 prove the trigonometric
identities.


  1. sinxcotx=cosx


2.

1

( 1 −cos^2 θ)

=cosecθ
Free download pdf