Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

Compound angles 165



  1. Show that:
    (a) sin


(
x+

π
3

)
+sin

(
x+

2 π
3

)
=


3cosx

and
(b)−sin

(
3 π
2

−φ

)
=cosφ


  1. Prove that:
    (a) sin


(
θ+

π
4

)
−sin

(
θ−

3 π
4

)

=


2 (sinθ+cosθ)

(b)

cos( 270 ◦+θ)
cos( 360 ◦−θ)

=tanθ


  1. Given cosA= 0 .42 and sinB= 0 .73 evaluate
    (a) sin(A−B),(b)cos(A−B),(c)tan(A+B),
    correct to 4 decimal places.
    [(a) 0.3136 (b) 0.9495 (c)−2.4687]
    In Problems 6 and 7, solve the equations for
    values ofθbetween 0◦and 360◦.

  2. 3sin(θ+ 30 ◦)=7cosθ
    [64. 72 ◦or 244. 72 ◦]

  3. 4sin(θ− 40 ◦)=2sinθ
    [67. 52 ◦or 247. 52 ◦]


17.2 Conversion ofasinωt+bcosωt


intoRsin(ωt+α)


(i) Rsin(ωt+α)represents a sine wave of maxi-
mum valueR, periodic time 2π/ω, frequency
ω/ 2 π and leading Rsinωt by angleα.(See
Chapter 14).
(ii) Rsin(ωt+α) may be expanded using the
compound-angle formula for sin(A+B),where
A=ωtandB=α. Hence,

Rsin(ωt+α)
=R[sinωtcosα+cosωtsinα]
=Rsinωtcosα+Rcosωtsinα
=(Rcosα)sinωt+(Rsinα)cosωt

(iii) If a=Rcosα and b=Rsinα,wherea and
bare constants, thenRsin(ωt+α)=asinωt+
bcosωt,i.e.asineandcosinefunctionofthesame
frequency when added produce a sine wave of the


same frequency (which isfurtherdemonstrated in
Chapter 25).
(iv) Sincea=Rcosα, then cosα=a/R, and since
b=Rsinα,thensinα=b/R.

R b

a



Figure 17.1

If the values ofaandbare known then the values
ofRandαmay be calculated. The relationship between
constantsa,b,Randαare shown in Fig. 17.1.
From Fig. 17.1, by Pythagoras’ theorem:

R=


a^2 +b^2

and from trigonometric ratios:

α=tan−^1 b/a

Problem 6. Find an expression for 3sinωt+ 4
cosωtin the formRsin(ωt+α)and sketch graphs
of 3sinωt,4cosωtandRsin(ωt+α)on the
same axes.

Let 3sinωt+4cosωt=Rsin(ωt+α)
then 3sinωt+4cosωt
=R[sinωtcosα+cosωtsinα]
=(Rcosα)sinωt+(Rsinα)cosωt

Equating coefficients of sinωtgives:

3 =Rcosα,from which,cosα=

3
R
Equating coefficients of cosωtgives:

4 =Rsinα,from which,sinα=

4
R
Free download pdf