Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

Methods of adding alternating waveforms 269


y 155
/6 or 30 8

y 254

Figure 25.12
y 155


y 25
4

(^0) 
yR
a
b
308
Figure 25.13
Usingthecosineruleontriangle0abofFig.25.13gives:
y^2 R= 52 + 42 −[2( 5 )( 4 )cos 150◦]
= 25 + 16 −(− 34. 641 )
= 75. 641
from which, yR=

75. 641 = 8. 697
Using the sine rule,
8. 697
sin150◦


4
sinφ
from which, sinφ=
4sin150◦
8. 697
= 0. 22996
and φ=sin−^10. 22996
= 13. 29 ◦or 0.232 rad
Hence, yR=y 1 +y 2 =5sinωt+4sin(ωt−π/ 6 )
= 8 .697sin(ωt− 0. 232 )
Problem 7. Giveny 1 =2sinωtand
y 2 =3sin(ωt+π/ 4 ), obtain an expression, by
calculation, for the resultant,yR=y 1 +y 2.
When timet=0, the position of phasorsy 1 and y 2
are as shown in Fig. 25.14(a). To obtain the resul-
tant,y 1 is drawn horizontally, 2 units long,y 2 is drawn
3 units long at an angle ofπ/4 rads or 45◦and joined to
the end ofy 1 as shown in Fig. 25.14(b).
From Fig. 25.14(b), and using the cosine rule:
yR^2 = 22 + 32 −[2( 2 )( 3 )cos135◦]
= 4 + 9 −[− 8 .485]= 21. 49
Hence, yR=

21. 49 = 4. 6357
y 152 y 152
y 253 y 253
yR
/4 or 45 8 ^1358458
(a) (b)
Figure 25.14
Using the sine rule:^3
sinφ



  1. 6357
    sin135◦
    from which, sinφ=3sin135


  2. 6357
    = 0. 45761
    Hence, φ=sin−^10. 45761
    = 27. 23 ◦or 0.475 rad.
    Thus, by calculation, yR=^4 .635sin(ωt+^0.^475 )
    Problem 8. Determine
    20sinωt+10sin
    (
    ωt+
    π
    3
    )
    using the cosine
    and sine rules.
    From the phasor diagram of Fig. 25.15, and using the
    cosine rule:
    i^2 R= 202 + 102 −[2( 20 )( 10 )cos 120◦]
    = 700
    Hence,iR=

    700 = 26 .46 A
    i 25 10 A
    i 15 20 A
    iR
    ^608
    Figure 25.15
    Using the sine rule gives :
    10
    sinφ



  3. 46
    sin120◦
    from which, sinφ=
    10sin120◦

  4. 46
    = 0. 327296
    and φ=sin−^10. 327296 = 19. 10 ◦
    = 19. 10 ×
    π
    180
    = 0 .333 rad

Free download pdf