282 Higher Engineering Mathematics
Hencep×( 2 r× 3 q)=( 4 i+j− 2 k)×(− 24 i− 42 j− 12 k)=∣
∣
∣
∣∣
∣
∣ijk
41 − 2
− 24 − 42 − 12∣
∣
∣
∣∣
∣
∣=i(− 12 − 84 )−j(− 48 − 48 )
+k(− 168 + 24 )=− 96 i+ 96 j− 144 kor− 48 ( 2 i− 2 j+ 3 k)Practical applications of vector productsProblem 9. Find the moment and the magnitude
of the moment of a force of(i+ 2 j− 3 k)newtons
about pointBhaving co-ordinates (0, 1, 1), when
the force acts on a line throughAwhose
co-ordinates are (1, 3, 4).The momentMabout pointBof a force vectorFwhich
has a position vector ofrfromAis given by:M=r×Fris the vector fromBtoA,i.e.r=BA.
But BA=BO+OA=OA−OB (see Problem 13,
page 262), that is:r=(i+ 3 j+ 4 k)−(j+k)=i+ 2 j+ 3 kMoment,M=r×F=(i+ 2 j+ 3 k)×(i+ 2 j− 3 k)=∣ ∣ ∣ ∣ ∣ ∣ ∣
ij k
12 3
12 − 3∣ ∣ ∣ ∣ ∣ ∣ ∣=i(− 6 − 6 )−j(− 3 − 3 )
+k( 2 − 2 )=− 12 i+ 6 jNmThe magnitude ofM,|M|=|r×F|=√
[(r•r)(F•F)−(r•F)^2 ]r•r=( 1 )( 1 )+( 2 )( 2 )+( 3 )( 3 )= 14F•F=( 1 )( 1 )+( 2 )( 2 )+(− 3 )(− 3 )= 14r•F=( 1 )( 1 )+( 2 )( 2 )+( 3 )(− 3 )=− 4|M|=√
[14× 14 −(− 4 )^2 ]=√
180Nm=13.42NmProblem 10. The axis of a circular cylinder
coincides with thez-axis and it rotates with an
angular velocity of( 2 i− 5 j+ 7 k)rad/s. Determine
the tangential velocity at a pointPon the cylinder,
whose co-ordinates are(j+ 3 k)metres, and also
determine the magnitude of the tangential velocity.ThevelocityvofpointPonabodyrotatingwithangular
velocityωabout a fixed axis is given by:v=ω×r,whereris the point on vectorP.Thus v=( 2 i− 5 j+ 7 k)×(j+ 3 k)=∣ ∣ ∣ ∣ ∣ ∣ ∣
ijk
2 − 57
013∣ ∣ ∣ ∣ ∣ ∣ ∣=i(− 15 − 7 )−j( 6 − 0 )+k( 2 − 0 )=(− 22 i− 6 j+ 2 k)m/sThemagnitude ofv,|v|=√
[(ω•ω)(r•r)−(r•ω)^2 ]ω•ω=( 2 )( 2 )+(− 5 )(− 5 )+( 7 )( 7 )= 78r•r=( 0 )( 0 )+( 1 )( 1 )+( 3 )( 3 )= 10ω•r=( 2 )( 0 )+(− 5 )( 1 )+( 7 )( 3 )= 16Hence,|v|=√
( 78 × 10 − 162 )=√
524m/s=22.89m/s