Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

Methods of differentiation 295


2.

2cos3x
x^3

[
− 6
x^4

(xsin3x+cos3x)

]

3.

2 x
x^2 + 1

[
2 ( 1 −x^2 )
(x^2 + 1 )^2

]

4.


x
cosx

[cosx
2

x +


xsinx
cos^2 x

]

5.

3


θ^3
2sin2θ

[
3


θ(3sin2θ− 4 θcos2θ)
4sin^22 θ

]

6.

ln2t

t




1 −

1
2

ln2t

t^3




7.

2 xe^4 x
sinx

[
2e^4 x
sin^2 x

{( 1 + 4 x)sinx−xcosx}

]


  1. Find the gradient of the curvey=


2 x
x^2 − 5

at
the point (2,−4). [−18]


  1. Evaluate


dy
dx

atx= 2 .5, correct to 3 significant

figures, giveny=

2 x^2 + 3
ln2x
[3.82]

27.7 Function of a function

It is often easier to make a substitution before differen-
tiating.


Ifyis a function ofxthen


dy
dx

=

dy
du

×

du
dx

This is known as the‘function of a function’rule (or
sometimes thechain rule).
For example, ify=( 3 x− 1 )^9 then,bymakingthesub-
stitutionu=( 3 x− 1 ),y=u^9 , which is of the ‘standard’
form.


Hence


dy
du

= 9 u^8 and

du
dx

= 3

Then


dy
dx

=

dy
du

×

du
dx

=( 9 u^8 )( 3 )= 27 u^8

Rewritinguas( 3 x− 1 )gives:

dy
dx

=27(3x−1)^8

Sinceyis a function ofu,anduis a function ofx,then
yis a function of a function ofx.

Problem 19. Differentiatey=3cos( 5 x^2 + 2 ).

Letu= 5 x^2 +2theny=3cosu

Hence

du
dx

= 10 xand

dy
du

=−3sinu.

Using the function of a function rule,

dy
dx

=

dy
du

×

du
dx

=(−3sinu)( 10 x)=− 30 xsinu

Rewritinguas 5x^2 +2gives:

dy
dx

=− 30 xsin( 5 x^2 + 2 )

Problem 20. Find the derivative of
y=( 4 t^3 − 3 t)^6.

Letu= 4 t^3 − 3 t,theny=u^6

Hence

du
dt

= 12 t^2 −3and

dy
du

= 6 u^5

Using the function of a function rule,

dy
dx

=

dy
du

×

du
dx

=( 6 u^5 )( 12 t^2 − 3 )

Rewritinguas( 4 t^3 − 3 t)gives:

dy
dt

= 6 ( 4 t^3 − 3 t)^5 ( 12 t^2 − 3 )

=18(4t^2 −1)(4t^3 − 3 t)^5

Problem 21. Determine the differential
coefficient ofy=


( 3 x^2 + 4 x− 1 ).

y=


( 3 x^2 + 4 x− 1 )=( 3 x^2 + 4 x− 1 )

1
2

Letu= 3 x^2 + 4 x−1theny=u

1
2

Hence

du
dx

= 6 x+4and

dy
du

=

1
2

u−

1

(^2) =
1
2

u

Free download pdf