Methods of differentiation 295
2.2cos3x
x^3[
− 6
x^4(xsin3x+cos3x)]3.2 x
x^2 + 1[
2 ( 1 −x^2 )
(x^2 + 1 )^2]4.√
x
cosx[cosx
2
√
x +√
xsinx
cos^2 x]5.3√
θ^3
2sin2θ[
3√
θ(3sin2θ− 4 θcos2θ)
4sin^22 θ]6.ln2t
√
t⎡
⎢
⎣1 −1
2ln2t
√
t^3⎤
⎥
⎦7.2 xe^4 x
sinx[
2e^4 x
sin^2 x{( 1 + 4 x)sinx−xcosx}]- Find the gradient of the curvey=
2 x
x^2 − 5at
the point (2,−4). [−18]- Evaluate
dy
dxatx= 2 .5, correct to 3 significantfigures, giveny=2 x^2 + 3
ln2x
[3.82]27.7 Function of a function
It is often easier to make a substitution before differen-
tiating.
Ifyis a function ofxthen
dy
dx=dy
du×du
dxThis is known as the‘function of a function’rule (or
sometimes thechain rule).
For example, ify=( 3 x− 1 )^9 then,bymakingthesub-
stitutionu=( 3 x− 1 ),y=u^9 , which is of the ‘standard’
form.
Hence
dy
du= 9 u^8 anddu
dx= 3Then
dy
dx=dy
du×du
dx=( 9 u^8 )( 3 )= 27 u^8Rewritinguas( 3 x− 1 )gives:dy
dx=27(3x−1)^8Sinceyis a function ofu,anduis a function ofx,then
yis a function of a function ofx.Problem 19. Differentiatey=3cos( 5 x^2 + 2 ).Letu= 5 x^2 +2theny=3cosuHencedu
dx= 10 xanddy
du=−3sinu.Using the function of a function rule,dy
dx=dy
du×du
dx=(−3sinu)( 10 x)=− 30 xsinuRewritinguas 5x^2 +2gives:dy
dx=− 30 xsin( 5 x^2 + 2 )Problem 20. Find the derivative of
y=( 4 t^3 − 3 t)^6.Letu= 4 t^3 − 3 t,theny=u^6Hencedu
dt= 12 t^2 −3anddy
du= 6 u^5Using the function of a function rule,dy
dx=dy
du×du
dx=( 6 u^5 )( 12 t^2 − 3 )Rewritinguas( 4 t^3 − 3 t)gives:dy
dt= 6 ( 4 t^3 − 3 t)^5 ( 12 t^2 − 3 )=18(4t^2 −1)(4t^3 − 3 t)^5Problem 21. Determine the differential
coefficient ofy=√
( 3 x^2 + 4 x− 1 ).y=√
( 3 x^2 + 4 x− 1 )=( 3 x^2 + 4 x− 1 )1
2Letu= 3 x^2 + 4 x−1theny=u1
2Hencedu
dx= 6 x+4anddy
du=1
2u−1(^2) =
1
2
√
u