Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

296 Higher Engineering Mathematics


Using the function of a function rule,

dy
dx

=

dy
du

×

du
dx

=

(
1
2


u

)
( 6 x+ 4 )=

3 x+ 2

u

i.e.

dy
dx

=

3 x+ 2

( 3 x^2 + 4 x− 1 )

Problem 22. Differentiatey=3tan^43 x.

Letu=tan3xtheny= 3 u^4

Hence

du
dx

=3sec^23 x,(from Problem 15), and

dy
du

= 12 u^3

Then

dy
dx

=

dy
du

×

du
dx

=( 12 u^3 )(3sec^23 x)

= 12 (tan3x)^3 (3sec^23 x)

i.e.

dy
dx

=36 tan^33 xsec^23 x

Problem 23. Find the differential coefficient of
y=

2
( 2 t^3 − 5 )^4

y=

2
( 2 t^3 − 5 )^4

= 2 ( 2 t^3 − 5 )−^4 .Letu=( 2 t^3 − 5 ),then

y= 2 u−^4

Hence
du
dt

= 6 t^2 and
dy
du

=− 8 u−^5 =
− 8
u^5

Then

dy
dt

=

dy
du

×

du
dt

=

(
− 8
u^5

)
( 6 t^2 )

=

− 48 t^2
(2t^3 −5)^5

Now try the following exercise

Exercise 118 Further problems on the
function of a function
In Problems 1 to 9, find the differential coefficients
with respect to the variable.


  1. ( 2 x− 1 )^6 [12( 2 x− 1 )^5 ]

  2. ( 2 x^3 − 5 x)^5 [5( 6 x^2 − 5 )( 2 x^3 − 5 x)^4 ]
    3. 2sin( 3 θ− 2 ) [6cos( 3 θ− 2 )]
    4. 2cos^5 α [−10cos^4 αsinα]


5.

1
(x^3 − 2 x+ 1 )^5

[
5 ( 2 − 3 x^2 )
(x^3 − 2 x+ 1 )^6

]


  1. 5e^2 t+^1 [10e^2 t+^1 ]

  2. 2cot( 5 t^2 + 3 ) [− 20 tcosec^2 ( 5 t^2 + 3 )]

  3. 6tan( 3 y+ 1 ) [18sec^2 ( 3 y+ 1 )]

  4. 2etanθ [2sec^2 θetanθ]

  5. Differentiateθsin


(
θ−

π
3

)
with respect toθ,
and evaluate, correct to 3 significant figures,
whenθ=

π
2

. [1.86]


27.8 Successive differentiation

When a functiony=f(x)is differentiated with respect
toxthedifferentialcoefficient is writtenas

dy
dx

orf′(x).
If the expression is differentiated again, the second dif-
ferential coefficient is obtained and is written as
d^2 y
dx^2
(pronounced dee twoyby deex squared) or f′′(x)
(pronouncedfdouble-dashx).
By successive differentiation further higher derivatives

such as

d^3 y
dx^3

and

d^4 y
dx^4

may be obtained.

Thus ify= 3 x^4 ,

dy
dx

= 12 x^3 ,

d^2 y
dx^2

= 36 x^2 ,

d^3 y
dx^3

= 72 x,

d^4 y
dx^4

=72 and

d^5 y
dx^5

=0.

Problem 24. Iff(x)= 2 x^5 − 4 x^3 + 3 x−5, find
f′′(x).

f(x)= 2 x^5 − 4 x^3 + 3 x− 5

f′(x)= 10 x^4 − 12 x^2 + 3

f′′(x)= 40 x^3 − 24 x= 4 x(10x^2 −6)
Free download pdf