296 Higher Engineering Mathematics
Using the function of a function rule,dy
dx=dy
du×du
dx=(
1
2√
u)
( 6 x+ 4 )=3 x+ 2
√
ui.e.dy
dx=3 x+ 2
√
( 3 x^2 + 4 x− 1 )Problem 22. Differentiatey=3tan^43 x.Letu=tan3xtheny= 3 u^4Hencedu
dx=3sec^23 x,(from Problem 15), anddy
du= 12 u^3Thendy
dx=dy
du×du
dx=( 12 u^3 )(3sec^23 x)= 12 (tan3x)^3 (3sec^23 x)i.e.dy
dx=36 tan^33 xsec^23 xProblem 23. Find the differential coefficient of
y=2
( 2 t^3 − 5 )^4y=2
( 2 t^3 − 5 )^4= 2 ( 2 t^3 − 5 )−^4 .Letu=( 2 t^3 − 5 ),theny= 2 u−^4Hence
du
dt= 6 t^2 and
dy
du=− 8 u−^5 =
− 8
u^5Thendy
dt=dy
du×du
dt=(
− 8
u^5)
( 6 t^2 )=− 48 t^2
(2t^3 −5)^5Now try the following exerciseExercise 118 Further problems on the
function of a function
In Problems 1 to 9, find the differential coefficients
with respect to the variable.- ( 2 x− 1 )^6 [12( 2 x− 1 )^5 ]
- ( 2 x^3 − 5 x)^5 [5( 6 x^2 − 5 )( 2 x^3 − 5 x)^4 ]
3. 2sin( 3 θ− 2 ) [6cos( 3 θ− 2 )]
4. 2cos^5 α [−10cos^4 αsinα]
5.1
(x^3 − 2 x+ 1 )^5[
5 ( 2 − 3 x^2 )
(x^3 − 2 x+ 1 )^6]- 5e^2 t+^1 [10e^2 t+^1 ]
- 2cot( 5 t^2 + 3 ) [− 20 tcosec^2 ( 5 t^2 + 3 )]
- 6tan( 3 y+ 1 ) [18sec^2 ( 3 y+ 1 )]
- 2etanθ [2sec^2 θetanθ]
- Differentiateθsin
(
θ−π
3)
with respect toθ,
and evaluate, correct to 3 significant figures,
whenθ=π
2. [1.86]
27.8 Successive differentiation
When a functiony=f(x)is differentiated with respect
toxthedifferentialcoefficient is writtenasdy
dxorf′(x).
If the expression is differentiated again, the second dif-
ferential coefficient is obtained and is written as
d^2 y
dx^2
(pronounced dee twoyby deex squared) or f′′(x)
(pronouncedfdouble-dashx).
By successive differentiation further higher derivativessuch asd^3 y
dx^3andd^4 y
dx^4may be obtained.Thus ify= 3 x^4 ,dy
dx= 12 x^3 ,d^2 y
dx^2= 36 x^2 ,d^3 y
dx^3= 72 x,d^4 y
dx^4=72 andd^5 y
dx^5=0.Problem 24. Iff(x)= 2 x^5 − 4 x^3 + 3 x−5, find
f′′(x).f(x)= 2 x^5 − 4 x^3 + 3 x− 5f′(x)= 10 x^4 − 12 x^2 + 3f′′(x)= 40 x^3 − 24 x= 4 x(10x^2 −6)