Methods of differentiation 297
Problem 25. Ify=cosx−sinx,evaluatex,inthe range 0≤x≤π
2
,whend^2 y
dx^2
is zero.Since y=cosx−sinx,dy
dx=−sinx−cosx and
d^2 y
dx^2=−cosx+sinx.Whend^2 y
dx^2is zero,−cosx+sinx=0,i.e. sinx=cosxorsinx
cosx=1.Hence tanx=1andx=arctan1= 45 ◦orπ
4radsin therange 0≤x≤π
2Problem 26. Giveny= 2 xe−^3 xshow thatd^2 y
dx^2+ 6dy
dx+ 9 y= 0.y= 2 xe−^3 x(i.e. a product)Hence
dy
dx=( 2 x)(−3e−^3 x)+(e−^3 x)( 2 )=− 6 xe−^3 x+2e−^3 x
d^2 y
dx^2=[(− 6 x)(−3e−^3 x)+(e−^3 x)(− 6 )]+(−6e−^3 x)= 18 xe−^3 x−6e−^3 x−6e−^3 xi.e.d^2 y
dx^2= 18 xe−^3 x−12e−^3 xSubstituting values intod^2 y
dx^2+ 6dy
dx+ 9 ygives:( 18 xe−^3 x−12e−^3 x)+ 6 (− 6 xe−^3 x+2e−^3 x)+ 9 ( 2 xe−^3 x)= 18 xe−^3 x−12e−^3 x− 36 xe−^3 x+12e−^3 x+ 18 xe−^3 x= 0Thus wheny= 2 xe−^3 x,d^2 y
dx^2+ 6dy
dx+ 9 y= 0Problem 27. Evaluated^2 y
dθ^2whenθ=0given
y=4sec2θ.Sincey=4sec2θ,thendy
dθ=(4)(2) sec2θtan2θ(from Problem 16)=8sec2θtan2θ(i.e. a product)
d^2 y
dθ^2=(8sec2θ)(2sec^22 θ)
+(tan2θ)[( 8 )( 2 )sec 2θtan2θ]
=16sec^32 θ+16sec2θtan^22 θWhen θ=0,d^2 y
dθ^2=16sec^30 +16sec0tan^20= 16 ( 1 )+ 16 ( 1 )( 0 )= 16.Now try the following exerciseExercise 119 Further problemson
successive differentiation- Ify= 3 x^4 + 2 x^3 − 3 x+2find
(a)d^2 y
dx^2(b)d^3 y
dx^3.[(a) 36x^2 + 12 x(b) 72x+12]- (a) Given f(t)=
2
5t^2 −1
t^3+3
t−√
t+ 1
determinef′′(t).(b) Evaluatef′′(t)whent=1.
⎡
⎢
⎣(a)4
5−12
t^5+6
t^3+1
4√
t^3
(b)− 4. 95⎤
⎥
⎦In Problems 3 and 4, find the second differential
coefficient with respect to the variable.- (a) 3sin2t+cost(b)2ln4θ
[
(a)−(12sin2t+cost)(b)
− 2
θ^2]- (a) 2cos^2 x (b)( 2 x− 3 )^4
[(a) 4(sin^2 x−cos^2 x)(b) 48( 2 x− 3 )^2 ]