312 Higher Engineering Mathematics
Problem 22. Find the equation of the normal to
the curvey=x^2 −x−2 at the point (1,−2).m=1 from Problem 21, hence the equation of the
normal is
y−y 1 =−1
m(x−x 1 )i.e. y−(− 2 )=−1
1(x− 1 )i.e. y+ 2 =−x+ 1
or y=−x− 1Thus the lineCD in Fig. 28.12 has the equation
y=−x−1.Problem 23. Determine the equations of thetangent and normal to the curvey=x^3
5at the point
(
− 1 ,−1
5)Gradientmof curvey=x^3
5is given bym=dy
dx=3 x^2
5At the point(
− 1 ,−^15)
,x=−1andm=3 (− 1 )^2
5=3
5
Equation of the tangentis:y−y 1 =m(x−x 1 )i.e. y−(
−1
5)
=3
5(x−(− 1 ))i.e. y+1
5=3
5(x+ 1 )or 5 y+ 1 = 3 x+ 3or 5 y− 3 x= 2Equation of the normal is:y−y 1 =−1
m(x−x 1 )i.e. y−(
−1
5)
=− 1
( 3 / 5 )(x−(− 1 ))i.e. y+1
5=−5
3(x+ 1 )i.e. y+
1
5=−
5
3x−
5
3Multiplyingeach term by 15 gives:
15 y+ 3 =− 25 x− 25Henceequation of the normalis:
15 y+ 25 x+ 28 = 0Now try the following exerciseExercise 124 Further problems on
tangents and normals
For the curves in problems 1 to 5, at the points
given, find (a) the equation of the tangent, and (b)
the equation of the normal.- y= 2 x^2 at the point (1, 2)
[
(a)y= 4 x− 2
(b) 4 y+x= 9]- y= 3 x^2 − 2 xat the point (2, 8)
[
(a)y= 10 x− 12
(b) 10 y+x= 82
]- y=
x^3
2
at the point(
− 1 ,−1
2)[
(a)y=^32 x+ 1
(b) 6 y+ 4 x+ 7 = 0]- y= 1 +x−x^2 at the point (−2,−5)
[
(a)y= 5 x+ 5
(b) 5 y+x+ 27 = 0
]- θ=
1
tat the point(
3 ,1
3)[
(a) 9 θ+t= 6
(b)θ= 9 t− 2623 or 3θ= 27 t− 80]28.6 Small changes
Ifyis a function ofx,i.e.y=f(x), and the approxi-
mate change inycorresponding to a small changeδxin
xis required, then:
δy
δx≈dy
dxandδy≈
dy
dx·δx or δy≈f′(x)·δx