Differentiation of parametric equations 319
x= 3 t^2 ,hencedx
dt= 6 ty= 6 t, hencedy
dt= 6From equation (1),
dy
dx
=dy
dt
dx
dt=
6
6 t=
1
tFrom equation (2),
d^2 y
dx^2=d
dt(
dy
dx)dx
dt=d
dt(
1
t)6 t=−1
t^2
6 t=−1
6 t^3Hence, radius of curvature, ρ=
√√
√
√[
1 +(
dy
dx) 2 ] 3d^2 y
dx^2=√
√
√√[
1 +(
1
t) 2 ]^3−1
6 t^3When t=2, ρ=
√
√
√
√[
1 +(
1
2) 2 ]^3−1
6 ( 2 )^3=√
( 1. 25 )^3−1
48=− 48√
( 1. 25 )^3 =−67.08Now try the following exercise
Exercise 127 Further problemson
differentiation of parametric equations- A cycloid has parametric equations
x= 2 (θ−sinθ),y= 2 ( 1 −cosθ). Evaluate, at
θ= 0 .62 rad, correct to 4 significant figures,
(a)dy
dx(b)d^2 y
dx^2.
[(a) 3.122 (b)−14.43]The equation of the normal drawn to a
curve at point (x 1 ,y 1 ) is given by:
y−y 1 =−1
dy 1
dx 1(x−x 1 )Use this in Problems 2 and 3.- Determine the equation of the normal drawn
to the parabolax=
1
4t^2 ,y=1
2tatt=2.[y=− 2 x+3]- Find the equation of the normal drawn to
the cycloidx= 2 (θ−sinθ),y= 2 ( 1 −cosθ)
atθ=
π
2rad. [y=−x+π]- Determine the value of
d^2 y
dx^2, correct to 4 sig-nificant figures, atθ=π
6rad for the cardioid
x= 5 ( 2 θ−cos2θ),y= 5 (2sinθ−sin2θ).
[0.02975]- The radius of curvature,ρ,ofpartofasur-
face when determining the surface tension of
a liquid is given by:
ρ=[
1 +(
dy
dx) 2 ] 3 / 2d^2 y
dx^2Find the radius of curvature (correct to 4 sig-
nificant figures) of the part of the surface
having parametric equations(a)x= 3 t,y=3
tat the pointt=1
2
(b)x=4cos^3 t,y=4sin^3 tatt=
π
6rad.[(a) 13.14 (b) 5.196]