Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

328 Higher Engineering Mathematics


(iv)

dy
dx

=y

{
3
x

+

1
xln2x

− 1 −cotx

}

(v)

dy
dx

=

x^3 ln2x
exsinx

{
3
x

+

1
xln2x

− 1 −cotx

}

Now try the following exercise

Exercise 132 Further problems on
differentiating logarithmic functions

In Problems 1 to 6, use logarithmic differentiation
to differentiate the given functions with respect to
the variable.


  1. y=


(x− 2 )(x+ 1 )
(x− 1 )(x+ 3 )




(x− 2 )(x+ 1 )
(x− 1 )(x+ 3 )

{
1
(x− 2 )

+
1
(x+ 1 )


1
(x− 1 )


1
(x+ 3 )

}






  1. y=


(x+ 1 )( 2 x+ 1 )^3
(x− 3 )^2 (x+ 2 )^4





(x+ 1 )( 2 x+ 1 )^3
(x− 3 )^2 (x+ 2 )^4

{
1
(x+ 1 )

+

6
( 2 x+ 1 )


2
(x− 3 )


4
(x+ 2 )

}







  1. y=


( 2 x− 1 )


(x+ 2 )
(x− 3 )


(x+ 1 )^3





( 2 x− 1 )


(x+ 2 )
(x− 3 )


(x+ 1 )^3

{
2
( 2 x− 1 )

+

1
2 (x+ 2 )


1
(x− 3 )


3
2 (x+ 1 )

}







  1. y=


e^2 xcos3x

(x− 4 )
[
e^2 xcos3x

(x− 4 )

{
2 −3tan3x−

1
2 (x− 4 )

}]


  1. y= 3 θsinθcosθ
    [
    3 θsinθcosθ


{
1
θ

+cotθ−tanθ

}]


  1. y=


2 x^4 tanx
e^2 xln2x

[
2 x^4 tanx
e^2 xln2x

{
4
x

+

1
sinxcosx

− 2 −

1
xln2x

}]


  1. Evaluate


dy
dx

whenx=1given

y=

(x+ 1 )^2


( 2 x− 1 )

(x+ 3 )^3

[
13
16

]


  1. Evaluate


dy

, correct to 3 significant figures,

whenθ=

π
4

giveny=

2eθsinθ

θ^5
[− 6 .71]

31.5 Differentiation of[f(x)]x


Whenever an expression to be differentiated con-
tains a term raised to a power which is itself a function
of the variable, then logarithmicdifferentiation must be
used. For example, the differentiation of expressions
such asxx,(x+ 2 )x,x


(x− 1 )andx^3 x+^2 can only be
achieved using logarithmic differentiation.

Problem 5. Determine

dy
dx

giveny=xx.

Taking Napierian logarithms of both sides of
y=xxgives:
lny=lnxx=xlnx, by law (iii) of Section 31.2
Differentiating both sides with respect toxgives:
1
y

dy
dx

=(x)

(
1
x

)
+(lnx)( 1 ), using the product rule

i.e.

1
y

dy
dx

= 1 +lnx,

from which,

dy
dx

=y( 1 +lnx)

i.e.

dy
dx

=xx( 1 +lnx)

Problem 6. Evaluate

dy
dx

whenx=−1given
y=(x+ 2 )x.

Taking Napierian logarithms of both sides of
y=(x+ 2 )xgives:

lny=ln(x+ 2 )x=xln(x+ 2 ),by law (iii)
of Section 31.2
Free download pdf