Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

346 Higher Engineering Mathematics


(b) To find

∂z
∂y

,xis kept constant.

Sincez=( 5 x^4 )+( 2 x^3 )y^2 − 3 y
then,
∂z
∂y

=( 5 x^4 )

d
dy

( 1 )+( 2 x^3 )

d
dy

(y^2 )− 3

d
dy

(y)

= 0 +( 2 x^3 )( 2 y)− 3

Hence

∂z
∂y

= 4 x^3 y− 3.

Problem 2. Giveny=4sin3xcos2t,find
∂y
∂x
and

∂y
∂t

To find

∂y
∂x

,tis kept constant.

Hence

∂y
∂x

=(4cos2t)

d
dx

(sin3x)

=(4cos2t)(3cos3x)

i.e.

∂y
∂x

=12cos3xcos2t

To find

∂y
∂t

,xis kept constant.

Hence

∂y
∂t

=(4sin3x)

d
dt

(cos 2t)

=(4sin3x)(−2sin2t)
i.e.

∂y
∂t

=−8sin3xsin2t

Problem 3. Ifz=sinxyshow that
1
y

∂z
∂x

=
1
x

∂z
∂y

∂z
∂x

=ycosxy,sinceyis kept constant.

∂z
∂y

=xcosxy,sincexis kept constant.

1
y

∂z
∂x

=

(
1
y

)
(ycosxy)=cosxy

and

1
x

∂z
∂y

=

(
1
x

)
(xcosxy)=cosxy.

Hence

1
y

∂z
∂x

=

1
x

∂z
∂y

Problem 4. Determine

∂z
∂x

and

∂z
∂y

when

z=

1

(x^2 +y^2 )

z=

1

(x^2 +y^2 )

=(x^2 +y^2 )

− 1
2

∂z
∂x
=−

1
2
(x^2 +y^2 )

− 3

(^2) ( 2 x),by the function of a
function rule (keepingyconstant)


−x
(x^2 +y^2 )
3
2


−x

(x^2 +y^2 )^3
∂z
∂y
=−
1
2
(x^2 +y^2 )
− 3
(^2) ( 2 y),(keepingxconstant)


−y

(x^2 +y^2 )^3
Problem 5. Pressurepof a mass of gas is given
bypV=mRT,wheremandRare constants,Vis
the volume andTthe temperature. Find expressions
for
∂p
∂T
and
∂p
∂V
.
SincepV=mRTthenp=
mRT
V
To find
∂p
∂T
,Vis kept constant.
Hence
∂p
∂T


(
mR
V
)
d
dT
(T)=
mR
V
To find
∂p
∂V
,Tis kept constant.
Hence
∂p
∂V
=(mRT)
d
dV
(
1
V
)
=(mRT)(−V−^2 )=
−mRT
V^2
Problem 6. The time of oscillation,t,of
a pendulum is given byt= 2 π

l
g
wherelis the
length of the pendulum andgthe free fall
acceleration due to gravity. Determine
∂t
∂l
and
∂t
∂g

Free download pdf