Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

Partial differentiation 349


(c)

∂^2 z
∂x∂y

=


∂x

(
∂z
∂y

)
=


∂x

( 12 x^2 y^2 + 14 y)= 24 xy^2

(d)

∂^2 z
∂y∂x

=


∂y

(
∂z
∂x

)
=


∂y

( 8 xy^3 − 6 x^2 )= 24 xy^2

[
It is noted that

∂^2 z
∂x∂y

=

∂^2 z
∂y∂x

]

Problem 8. Show that whenz=e−tsinθ,
(a)

∂^2 z
∂t^2

=−

∂^2 z
∂θ^2

,and(b)

∂^2 z
∂t∂θ

=

∂^2 z
∂θ∂t

(a)


∂z
∂t

=−e−tsinθand

∂^2 z
∂t^2

=e−tsinθ

∂z
∂θ

=e−tcosθand

∂^2 z
∂θ^2

=−e−tsinθ

Hence

∂^2 z
∂t^2

=−

∂^2 z
∂θ^2

(b)

∂^2 z
∂t∂θ

=


∂t

(
∂z
∂θ

)
=


∂t

(e−tcosθ)

=−e−tcosθ
∂^2 z
∂θ∂t

=


∂θ

(
∂z
∂t

)
=


∂θ

(−e−tsinθ)

=−e−tcosθ

Hence

∂^2 z
∂t∂θ

=

∂^2 z
∂θ∂t

Problem 9. Show that ifz=

x
y

lny,then

(a)

∂z
∂y

=x

∂^2 z
∂y∂x

and (b) evaluate

∂^2 z
∂y^2

when
x=−3andy=1.

(a) To find

∂z
∂x

,yis kept constant.

Hence

∂z
∂x

=

(
1
y

lny

)
d
dx

(x)=

1
y

lny

To find

∂z
∂y

,xis kept constant.
Hence
∂z
∂y

=(x)

d
dy

(
lny
y

)

=(x)


⎪⎪

⎪⎪

(y)

(
1
y

)
−(lny)( 1 )

y^2


⎪⎪

⎪⎪

using the quotient rule

=x

(
1 −lny
y^2

)
=

x
y^2

( 1 −lny)

∂^2 z
∂y∂x

=


∂y

(
∂z
∂x

)
=


∂y

(
lny
y

)

=

(y)

(
1
y

)
−(lny)( 1 )

y^2
using the quotient rule

=

1
y^2

( 1 −lny)

Hencex

∂^2 z
∂y∂x

=

x
y^2

(1−lny)=

∂z
∂y

(b)
∂^2 z
∂y^2

=


∂y

(
∂z
∂y

)
=


∂y

{
x
y^2

( 1 −lny)

}

=(x)

d
dy

(
1 −lny
y^2

)

=(x)


⎪⎪

⎪⎪

(y^2 )

(

1
y

)
−( 1 −lny)( 2 y)

y^4


⎪⎪

⎪⎪

using the quotient rule

=

x
y^4

[−y− 2 y+ 2 ylny]

=

xy
y^4

[− 3 +2lny]=

x
y^3

(2lny− 3 )

Whenx=−3andy=1,

∂^2 z
∂y^2

=

(− 3 )
( 1 )^3

(2ln1− 3 )=(− 3 )(− 3 )= 9

Now try the following exercise

Exercise 139 Further problemson second
order partial derivatives

In Problems 1 to 4, find (a)

∂^2 z
∂x^2

(b)

∂^2 z
∂y^2
(c)

∂^2 z
∂x∂y

(d)

∂^2 z
∂y∂x


  1. z=( 2 x− 3 y)^2


[
(a) 8 (b) 18
(c)− 12 (d)− 12

]
Free download pdf