Maxima, minima and saddle points for functions of two variables 359
36.3 Procedure to determine
maxima, minima and saddle
points for functions of two
variables
Givenz=f(x,y):
(i) determine∂z
∂xand∂z
∂y(ii) for stationary points,∂z
∂x=0and∂z
∂y=0,(iii) solve the simultaneous equations∂z
∂x=0and
∂z
∂y=0forxandy, which gives the co-ordinates
of the stationary points,(iv) determine∂^2 z
∂x^2,∂^2 z
∂y^2and∂^2 z
∂x∂y(v) for each of the co-ordinates of the stationarypoints,substitutevaluesofxandyinto∂^2 z
∂x^2,∂^2 z
∂y^2and∂^2 z
∂x∂yand evaluate each,(vi) evaluate(
∂^2 z
∂x∂y) 2
for each stationary point,(vii) substitute the values of∂^2 z
∂x^2,∂^2 z
∂y^2and∂^2 z
∂x∂y
into the equation=(
∂^2 z
∂x∂y) 2
−(
∂^2 z
∂x^2)(
∂^2 z
∂y^2)and evaluate,
(viii) (a) if> 0 then the stationary point is a
saddle point.(b) if< 0 and∂^2 z
∂x^2< 0 , then the stationary
point is amaximum point,
and(c) if< 0 and∂^2 z
∂x^2> 0 , then the stationary
point is aminimum point.36.4 Worked problems on maxima,
minima and saddle points for
functions of two variables
Problem 1. Show that the function
z=(x− 1 )^2 +(y− 2 )^2 has one stationary point only
and determine its nature. Sketch the surface
represented byzand produce a contour map in the
x-yplane.Following the above procedure:(i)∂z
∂x= 2 (x− 1 )and∂z
∂y= 2 (y− 2 )(ii) 2(x− 1 )= 0 ( 1 )2 (y− 2 )= 0 ( 2 )(iii) From equations (1) and (2),x=1andy=2, thus
the only stationary point exists at (1, 2).(iv) Since∂z
∂x= 2 (x− 1 )= 2 x− 2 ,∂^2 z
∂x^2= 2and since∂z
∂y= 2 (y− 2 )= 2 y− 4 ,∂^2 z
∂y^2= 2and∂^2 z
∂x∂y=∂
∂x(
∂z
∂y)
=∂
∂x( 2 y− 4 )= 0(v)∂^2 z
∂x^2=∂^2 z
∂y^2=2and∂^2 z
∂x∂y= 0(vi)(
∂^2 z
∂x∂y) 2
= 0(vii) =( 0 )^2 −( 2 )( 2 )=− 4(viii) Since<0and∂^2 z
∂x^2>0,the stationary point
(1, 2) is a minimum.The surfacez=(x− 1 )^2 +(y− 2 )^2 isshowninthree
dimensions in Fig. 36.7. Looking down towards the
x-yplane from above, it is possible to produce acon-
tour map. A contour is a line on a map which gives
places having the same vertical height above a datum
line (usuallythe mean sea-level on a geographical map).