Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

Standard integration 373


=


⎣θ

3
2
3
2

+

2 θ

1
2
1
2



4

1

=

[
2
3


θ^3 + 4


θ

] 4

1

=

{
2
3


( 4 )^3 + 4


4

}

{
2
3


( 1 )^3 + 4


( 1 )

}

=

{
16
3

+ 8

}

{
2
3

+ 4

}

= 5

1
3

+ 8 −

2
3

− 4 = 8

2
3

Problem 14. Evaluate

∫ π
2
0

3sin2xdx.

∫ π
2
0

3sin2xdx

=

[
( 3 )

(

1
2

)
cos2x

]π 2

0

=

[

3
2

cos2x

]π 2

0

=

{

3
2

cos2


2

)}

{

3
2

cos2( 0 )

}

=

{

3
2

cosπ

}

{

3
2

cos0

}

=

{

3
2

(− 1 )

}

{

3
2

( 1 )

}
=

3
2

+

3
2

= 3

Problem 15. Evaluate

∫ 2

1

4cos3tdt.

∫ 2


1

4cos3tdt=

[
( 4 )

(
1
3

)
sin3t

] 2

1

=

[
4
3

sin3t

] 2

1

=

{
4
3

sin6

}

{
4
3

sin3

}

Note that limits of trigonometric functions are always
expressed in radians—thus, for example, sin6 means
the sine of 6radians=− 0. 279415 ...


Hence


∫ 2

1

4cos3tdt

=

{
4
3

(− 0. 279415 ...)

}

{
4
3

( 0. 141120 ...)

}

=(− 0. 37255 )−( 0. 18816 )=− 0. 5607

Problem 16. Evaluate

(a)

∫ 2

1

4e^2 xdx (b)

∫ 4

1

3
4 u

du,

each correct to 4 significant figures.

(a)

∫ 2

1

4e^2 xdx=

[
4
2

e^2 x

] 2

1

=2[e^2 x]^21 =2[e^4 −e^2 ]

=2[54. 5982 − 7 .3891]= 94. 42

(b)

∫ 4

1

3
4 u

du=

[
3
4

lnu

] 4

1

=

3
4

[ln4−ln1]

=

3
4

[1. 3863 −0]= 1. 040

Now try the following exercise

Exercise 146 Further problems on definite
integrals

In problems 1 to 8, evaluate the definite integrals
(where necessary, correct to 4 significant figures).


  1. (a)


∫ 4

1

5 x^2 dx (b)

∫ 1

− 1


3
4

t^2 dt
[
(a) 105 (b)−

1
2

]


  1. (a)


∫ 2

− 1

( 3 −x^2 )dx (b)

∫ 3

1

(x^2 − 4 x+ 3 )dx

[
(a) 6 (b)− 1

1
3

]


  1. (a)


∫π

0

3
2

cosθdθ (b)

∫ π
2
0

4cosθdθ

[(a) 0 (b) 4]


  1. (a)


∫ π
3
π
6

2sin2θdθ (b)

∫ 2

0

3sintdt

[(a) 1 (b) 4.248]


  1. (a)


∫ 1

0

5cos3xdx (b)

∫ π 6

0

3sec^22 xdx

[(a) 0.2352 (b) 2.598]
Free download pdf