Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

Some applications of integration 377



  1. Sketch the curvesy=x^2 +3andy= 7 − 3 x
    and determine the area enclosed by them.
    [20^56 square units]

  2. Determine the area enclosed by the three
    straight linesy= 3 x,2y=xandy+ 2 x=5.
    [2^12 square units]


38.3 Mean and r.m.s. values


With reference to Fig. 38.5,


mean value,y=

1
b−a

∫b

a

ydx

and r.m.s. value=






{
1
b−a

∫b

a

y^2 dx

}

0 x 5 ax 5 b

y

x

y

y 5 f(x)

Figure 38.5


Problem 4. A sinusoidal voltagev=100sinωt
volts. Use integration to determine over half a cycle
(a) the mean value, and (b) the r.m.s. value.

(a) Half a cycle means the limits are 0 toπradians.

Mean value,y=

1
π− 0

∫π

0

vd(ωt)

=

1
π

∫π

0

100sinωtd(ωt)

=
100
π

[−cosωt]π 0

=

100
π

[(−cosπ)−(−cos 0)]

=

100
π

[(+ 1 )−(− 1 )]=

200
π
=63.66volts

[Note that for a sine wave,

mean value=

2
π

×maximum value

In this case, mean value=

2
π

× 100 = 63 .66V]

(b) r.m.s. value

=

√{
1
π− 0

∫π

0

v^2 d(ωt)

}

=

√{
1
π

∫π

0

(100sinωt)^2 d(ωt)

}

=

√{
10000
π

∫π

0

sin^2 ωtd(ωt)

}
,

which is not a ‘standard’ integral.
It is shown in Chapter 17 that
cos2A= 1 −2sin^2 A and this formula is used
whenever sin^2 Aneeds to be integrated.
Rearranging cos2A= 1 −2sin^2 Agives

sin^2 A=

1
2

( 1 −cos2A)

Hence

√{
10000
π

∫π

0

sin^2 ωtd(ωt)

}

=

√{
10000
π

∫π

0

1
2

( 1 −cos2ωt)d(ωt)

}

=

√{
10000
π

1
2

[
ωt−

sin2ωt
2


0

}

=

√ √ √ √ √ √ √

⎪⎪

⎪⎪

10000
π

1
2

[(
π−

sin2π
2

)


(
0 −

sin0
2

)]


⎪⎪

⎪⎪

=

√{
10000
π

1
2
[π]

}

=

√{
10000
2

}
=

100

2

=70.71volts

[Note that for a sine wave,

r.m.s. value=

1

2

×maximum value.
Free download pdf