Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

424 Higher Engineering Mathematics


i.e.

(
1 +

a^2
b^2

)∫
eaxcosbxdx

=

1
b

eaxsinbx+

a
b^2

eaxcosbx

i.e.

(
b^2 +a^2
b^2

)∫
eaxcosbxdx

=

eax
b^2

(bsinbx+acosbx)

Hence


eaxcosbxdx

=

(
b^2
b^2 +a^2

)(
eax
b^2

)
(bsinbx+acosbx)

=

eax
a^2 +b^2

(bsinbx+acosbx)+c

Using a similar method to above, that is, integrating by
parts twice, the following result may be proved:

eaxsinbxdx

=

eax
a^2 +b^2

(asinbx−bcosbx)+c (2)

Problem 10. Evaluate

∫ π
4
0

etsin2tdt, correct to
4 decimal places.

Comparing


etsin2tdtwith


eaxsinbxdxshows that
x=t,a=1andb=2.
Hence, substituting into equation (2) gives:
∫ π
4
0

etsin2tdt

=

[
et
12 + 22

(1sin2t−2cos2t)


4
0

=

[
e

π
4
5

(
sin2


4

)
−2cos2


4

))
]


[
e^0
5

(sin0−2cos0)

]

=

[
e

π
4
5

( 1 − 0 )

]

[
1
5

( 0 − 2 )

]
=

e

π
4
5

+

2
5

=0.8387,correct to 4 decimal places.

Now try the following exercise

Exercise 168 Further problems on
integration by parts

Determine the integrals in Problems 1 to 5 using
integration by parts.

1.


2 x^2 lnxdx

[
2
3

x^3

(
lnx−

1
3

)
+c

]

2.


2ln3xdx [2x(ln3x− 1 )+c]

3.


x^2 sin3xdx
[
cos3x
27

( 2 − 9 x^2 )+

2
9

xsin3x+c

]

4.


2e^5 xcos2xdx
[
2
29

e^5 x(2sin2x+5cos2x)+c

]

5.


2 θsec^2 θdθ [2[θtanθ−ln(secθ)]+c]

Evaluate the integrals in Problems 6 to 9, correct
to 4 significant figures.

6.

∫ 2

1

xlnxdx [0.6363]

7.

∫ 1

0

2e^3 xsin2xdx [11.31]

8.

∫ π
2
0

etcos3tdt [− 1 .543]

9.

∫ 4

1


x^3 lnxdx [12.78]
Free download pdf