Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

Reduction formulae 427


From equation (1),In=xnex−nIn− 1


Hence



x^3 exdx=I 3 =x^3 ex− 3 I 2
I 2 =x^2 ex− 2 I 1
I 1 =x^1 ex− 1 I 0

and I 0 =



x^0 exdx=


exdx=ex

Thus



x^3 exdx=x^3 ex−3[x^2 ex− 2 I 1 ]
=x^3 ex−3[x^2 ex− 2 (xex−I 0 )]
=x^3 ex−3[x^2 ex− 2 (xex−ex)]
=x^3 ex− 3 x^2 ex+ 6 (xex−ex)
=x^3 ex− 3 x^2 ex+ 6 xex−6ex

i.e.



x^3 exdx=ex(x^3 − 3 x^2 + 6 x−6)+c

Now try the following exercise


Exercise 169 Further problems on using
reduction formulae for integrals of the form∫
xnexdx


  1. Use a reduction formula to determine∫
    x^4 exdx.
    [ex(x^4 − 4 x^3 + 12 x^2 − 24 x+ 24 )+c]

  2. Determine



t^3 e^2 tdt using a reduction for-
mula.
[
e^2 t

( 1
2 t

(^3) − 3
4 t
(^2) + 3
4 t−
3
8
)
+c
]



  1. Use the result of Problem 2 to evaluate∫
    1
    05 t


(^3) e 2 tdt,correct to 3 decimal places.
[6.493]


44.3 Using reduction formulae for


integrals of the form



xncosxdx


and



xnsinxdx


(a)



xncosxdx

LetIn=



xncosxdxthen, using integration by parts:

if u=xnthen


du
dx

=nxn−^1

and if dv=cosxdxthen


v=


cosxdx=sinx

Hence In=xnsinx−


(sinx)nxn−^1 dx

=xnsinx−n


xn−^1 sinxdx

Using integration by parts again, this time with
u=xn−^1 :
du
dx

=(n− 1 )xn−^2 ,anddv=sinxdx,

from which,

v=


sinxdx=−cosx

Hence In=xnsinx−n

[
xn−^1 (−cosx)



(−cosx)(n− 1 )xn−^2 dx

]

=xnsinx+nxn−^1 cosx

−n(n− 1 )


xn−^2 cosxdx

i.e.

In=xnsinx+nxn−^1 cosx
−n(n−1)In− 2

(2)

Problem 3.∫ Use a reduction formula to determine
x^2 cosxdx.

Using the reduction formula of equation (2):

x^2 cosxdx=I 2

=x^2 sinx+ 2 x^1 cosx− 2 ( 1 )I 0

and I 0 =


x^0 cosxdx

=


cosxdx=sinx

Hence

x^2 cosxdx=x^2 sinx+ 2 xcosx−2sinx+c

Problem 4. Evaluate

∫ 2
14 t

(^3) costdt, correct to 4
significant figures.
Let us firstly find a reduction formula for∫
t^3 costdt.

Free download pdf