Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

Second order differential equations of the forma


d^2 y

dx^2 +b


dy
dx+cy=f(x)^487

−^23 =( 0 +B)e^0 +^13 e^0 , from which,B=−1.
dy
dx

=(Ax+B)ex+ex(A)+^43 e^4 x.

Whenx=0,

dy
dx

= 4

1
3

, thus

13
3

=B+A+

4
3
from which,A=4, sinceB=−1.
Hence the particular solution is:

y=( 4 x− 1 )ex+^13 e^4 x

Problem 5. Solve the differential equation

2

d^2 y
dx^2


dy
dx

− 3 y=5e

3
2 x.

Using the procedure of Section 51.2:


(i) 2

d^2 y
dx^2


dy
dx

− 3 y=5e

3
2 x in D-operator form is

(2D^2 −D− 3 )y=5e

3
2 x.

(ii) Substituting m for D gives the auxiliary
equation 2m^2 −m− 3 =0. Factorizing gives:
( 2 m− 3 )(m+ 1 )=0, from which, m=^32 or
m=−1. Since the roots are real and different then
the C.F.,u=Ae

3
2 x+Be−x.

(iii) Since e

3
2 x appears in the C.F. and in the
right hand side of the differential equation, let the
P.I.,v=kxe

3
2 x(see Table 51.1(c), snag case (i)).

(iv) Substitutingv=kxe

3
2 x into(2D^2 −D− 3 )v=
5e

3
2 xgives:(2D^2 −D− 3 )kxe

3
2 x=5e

3
2 x.

D

(
kxe

3
2 x

)
=(kx)

(
3
2 e

3
2 x

)
+

(
e

3
2 x

)
(k),

by the product rule,

=ke

3
2 x

( 3
2 x+^1

)

D^2

(
kxe

3
2 x

)
=D

[
ke

3
2 x

( 3
2 x+^1

)
]

=

(
ke

3
2 x

)
( 3
2

)

+

( 3
2 x+^1

)
(
3
2 ke

3
2 x

)

=ke

3
2 x

( 9
4 x+^3

)

Hence(2D^2 −D− 3 )

(
kxe

3
2 x

)

= 2

[
ke

3
2 x

( 9
4 x+^3

)
]

[
ke

3
2 x

( 3
2 x+^1

)
]

− 3

[
kxe

3
2 x

]
=5e

3
2 x

i.e.^92 kxe

3
2 x+ 6 ke

3
2 x−^32 xke

3
2 x−ke

3
2 x

− 3 kxe

3
2 x=5e

3
2 x

Equating coefficients of e

3
2 xgives: 5k=5, from
which,k=1.
Hence the P.I.,v=kxe

3
2 x=xe

3
2 x.

(v) The general solution is y=u+v,i.e.
y=Ae

3
2 x+Be−x+xe

3
2 x.

Problem 6. Solve

d^2 y
dx^2

− 4

dy
dx

+ 4 y=3e^2 x.

Using the procedure of Section 51.2:

(i)

d^2 y
dx^2

− 4

dy
dx

+ 4 y=3e^2 x in D-operator form is
(D^2 −4D+ 4 )y=3e^2 x.
(ii) Substituting m for D gives the auxiliary
equation m^2 − 4 m+ 4 =0. Factorizing gives:
(m− 2 )(m− 2 )=0, from which,m=2 twice.
(iii) Since the roots are real and equal, the C.F.,
u=(Ax+B)e^2 x.
(iv) Since e^2 xandxe^2 xboth appear in the C.F. let the
P.I.,v=kx^2 e^2 x(see Table 51.1(c), snag case (ii)).
(v) Substitutingv=kx^2 e^2 x into(D^2 −4D+ 4 )v=
3e^2 xgives:(D^2 −4D+ 4 )(kx^2 e^2 x)=3e^2 x

D(kx^2 e^2 x)=(kx^2 )(2e^2 x)+(e^2 x)( 2 kx)

= 2 ke^2 x(x^2 +x)

D^2 (kx^2 e^2 x)=D[2ke^2 x(x^2 +x)]

=( 2 ke^2 x)( 2 x+ 1 )+(x^2 +x)( 4 ke^2 x)

= 2 ke^2 x( 4 x+ 1 + 2 x^2 )

Hence(D^2 −4D+ 4 )(kx^2 e^2 x)

=[2ke^2 x( 4 x+ 1 + 2 x^2 )]

−4[2ke^2 x(x^2 +x)]+4[kx^2 e^2 x]

=3e^2 x
Free download pdf