Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

502 Higher Engineering Mathematics


Thus, whenr=1,a 2 =

a 1
( 2 × 8 )

=

a 0
( 2 × 5 × 8 )

sincea 1 =

a 0
5
whenr=2,a 3 =

a 2
( 3 × 11 )

=

a 0
( 2 × 3 )( 5 × 8 × 11 )

whenr=3,a 4 =

a 3
( 4 × 14 )

=

a 0
( 2 × 3 × 4 )( 5 × 8 × 11 × 14 )
and so on.
From equation (16), the trial solution was:

y=xc{a 0 +a 1 x+a 2 x^2 +a 3 x^3 +···+arxr+···}

Substitutingc=

2
3

and the above values of a 1 , a 2 ,
a 3 , ... into the trial solution gives:

y=x

2
3

{
a 0 +

(a
0
5

)
x+

(
a 0
2 × 5 × 8

)
x^2

+

(
a 0
( 2 × 3 )( 5 × 8 × 11 )

)
x^3

+

(
a 0
( 2 × 3 × 4 )( 5 × 8 × 11 × 14 )

)
x^4 +···

}

i.e.y=a 0 x

2
3

{
1 +

x
5

+

x^2
( 2 × 5 × 8 )

+

x^3
( 2 × 3 )( 5 × 8 × 11 )

+

x^4
( 2 × 3 × 4 )( 5 × 8 × 11 × 14 )

+ ···

}
(22)

Sincea 0 is an arbitrary (non-zero) constant ineach
solution, its value could well be different.
Leta 0 =Ainequation(21), anda 0 =Binequation(22).
Also, if the first solution is denoted byu(x)and the
second byv(x), then the general solution of the given
differential equation isy=u(x)+v(x). Hence,

y=A

{
1 +x+

x^2
(2×4)

+

x^3
(2×3)(4×7)

+

x^4
(2× 3 ×4)(4× 7 ×10)

+···

}

+Bx

2
3

{
1 +

x
5

+

x^2
(2× 5 ×8)

+

x^3
(2×3)(5× 8 ×11)

+

x^4
(2× 3 ×4)(5× 8 × 11 ×14)

+···

}

Problem 8. Use the Frobenius method to
determine the general power series solution of the
differential equation:

2 x^2

d^2 y
dx^2
−x

dy
dx
+( 1 −x)y=0.

The differential equation may be rewritten as:
2 x^2 y′′−xy′+( 1 −x)y=0.
(i) Let a trial solution be of the form

y=xc{a 0 +a 1 x+a 2 x^2 +a 3 x^3 +···
+arxr+···} (23)
wherea 0 = 0 ,

i.e. y=a 0 xc+a 1 xc+^1 +a 2 xc+^2 +a 3 xc+^3
+ ···+arxc+r+··· (24)

(ii) Differentiating equation (24) gives:

y′=a 0 cxc−^1 +a 1 (c+ 1 )xc+a 2 (c+ 2 )xc+^1
+ ···+ar(c+r)xc+r−^1 +···

andy′′=a 0 c(c− 1 )xc−^2 +a 1 c(c+ 1 )xc−^1
+a 2 (c+ 1 )(c+ 2 )xc+···
+ar(c+r− 1 )(c+r)xc+r−^2 +···

(iii) Substitutingy, y′and y′′ into each term of
the given equation 2x^2 y′′−xy′+( 1 −x)y= 0
gives:

2 x^2 y′′= 2 a 0 c(c− 1 )xc+ 2 a 1 c(c+ 1 )xc+^1
+ 2 a 2 (c+ 1 )(c+ 2 )xc+^2 +···
+ 2 ar(c+r− 1 )(c+r)xc+r+···
(a)

−xy′=−a 0 cxc−a 1 (c+ 1 )xc+^1
−a 2 (c+ 2 )xc+^2 −···
−ar(c+r)xc+r−··· (b)

( 1 −x)y=( 1 −x)(a 0 xc+a 1 xc+^1 +a 2 xc+^2
+a 3 xc+^3 +···+arxc+r+···)
=a 0 xc+a 1 xc+^1 +a 2 xc+^2 +a 3 xc+^3
+ ···+arxc+r+···
Free download pdf