Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

504 Higher Engineering Mathematics


=

ar− 1

2 r^2 −

1
2


1
2

−r+ 1

=

ar− 1
2 r^2 −r

=

ar− 1
r(2r−1)

Thus, whenr=1,a 1 =

a 0
1 ( 2 − 1 )

=

a 0
1 × 1

whenr=2,a 2 =

a 1
2 ( 4 − 1 )

=

a 1
( 2 × 3 )

=

a 0
( 2 × 3 )

whenr=3,a 3 =

a 2
3 ( 6 − 1 )

=

a 2
3 × 5

=

a 0
( 2 × 3 )×( 3 × 5 )

whenr=4,a 4 =

a 3
4 ( 8 − 1 )

=

a 3
4 × 7

=

a 0
( 2 × 3 × 4 )×( 3 × 5 × 7 )
and so on.
From equation (23), the trial solution was:

y=xc

{
a 0 +a 1 x+a 2 x^2 +a 3 x^3 +···
+arxr+···

}

Substitutingc=

1
2

and the above values ofa 1 ,a 2 ,
a 3 ,...into the trial solution gives:

y=x

1
2

{
a 0 +a 0 x+

a 0
( 2 × 3 )

x^2 +

a 0
( 2 × 3 )×( 3 × 5 )

x^3

+

a 0
( 2 × 3 × 4 )×( 3 × 5 × 7 )

x^4 + ···

}

i.e.y=a 0 x

1
2

{
1 +x+

x^2
( 2 × 3 )

+

x^3
( 2 × 3 )×( 3 × 5 )

+

x^4
( 2 × 3 × 4 )×( 3 × 5 × 7 )

+ ···

}
(27)

Sincea 0 is an arbitrary (non-zero) constant in
each solution, its value could well be different.
Leta 0 =Ain equation (26), anda 0 =Bin equa-
tion (27). Also, if the first solution is denoted by
u(x)and the second byv(x), then the general

solution of the given differential equation is
y=u(x)+v(x),

i.e.y=Ax

{
1 +

x
(1×3)

+

x^2
(1×2)×(3×5)

+

x^3
(1× 2 ×3)×(3× 5 ×7)

+

x^4
(1× 2 × 3 ×4)×(3× 5 × 7 ×9)

+···

}
+Bx

(^12)
{
1 +x+
x^2
(2×3)



  • x^3
    (2×3)×(3×5)


  • x^4
    (2× 3 ×4)×(3× 5 ×7)
    +···
    }
    Problem 9. Use the Frobenius method to
    determine the general power series solution of the
    differential equation:
    d^2 y
    dx^2
    − 2 y=0.
    The differential equation may be rewritten as:
    y′′− 2 y=0.
    (i) Let a trial solution be of the form
    y=xc
    {
    a 0 +a 1 x+a 2 x^2 +a 3 x^3 +···
    +arxr+···
    }
    (28)
    wherea 0 =0,
    i.e.y=a 0 xc+a 1 xc+^1 +a 2 xc+^2 +a 3 xc+^3



  • ···+arxc+r+··· (29)
    (ii) Differentiating equation (29) gives:
    y′=a 0 cxc−^1 +a 1 (c+ 1 )xc+a 2 (c+ 2 )xc+^1

  • ···+ar(c+r)xc+r−^1 +···
    andy′′=a 0 c(c− 1 )xc−^2 +a 1 c(c+ 1 )xc−^1
    +a 2 (c+ 1 )(c+ 2 )xc+···
    +ar(c+r− 1 )(c+r)xc+r−^2 +···
    (iii) Replacingrby(r+ 2 )in
    ar(c+r− 1 )(c+r)xc+r−^2 gives:
    ar+ 2 (c+r+ 1 )(c+r+ 2 )xc+r

Free download pdf