Power series methods of solving ordinary differential equations 509
+(x
2)−v{ 1
( 1 −v)−x^2
22 (1!)( 2 −v)+x^4
24 (2!)( 3 −v)−···}From Problem 10 above,whenc=+v,
a 2 =
−a 0
22 (v+ 1 )If we leta 0 =
1
2 v(v+ 1 )then
a 2 =− 1
22 (v+ 1 ) 2 v(v+ 1 )=− 1
2 v+^2 (v+ 1 )(v+ 1 )=− 1
2 v+^2 (v+ 2 )from equation (41)Similarly, a 4 =
a 2
v^2 −(c+ 4 )^2from equation (37)=a 2
(v−c− 4 )(v+c+ 4 )=a 2
− 4 ( 2 v+ 4 )
sincec=v=−a 2
23 (v+ 2 )=− 1
23 (v+ 2 )− 1
2 v+^2 (v+ 2 )=1
2 v+^4 (2!)(v+ 3 )
since(v+ 2 )(v+ 2 )=(v+ 3 )and a 6 =
− 1
2 v+^6 (3!)(v+ 4 )and so on.Therecurrence relationis:
ar=(− 1 )r/^2
2 v+r(r
2!)
(
v+r
2+ 1)And if we letr= 2 k,then
a 2 k=(−1)k
2 v+^2 k(k!)(v+k+1)(42)fork=1, 2, 3,...Hence, it is possible to write the new form for equation
(38) as:
y=Axv{
1
2 v(v+ 1 )−x^2
2 v+^2 (1!)(v+ 2 )+x^4
2 v+^4 (2!)(v+ 3 )−···}This is calledthe Bessel function of the first order kind,
of orderv,and is denoted byJv(x),i.e. Jv(x)=(x
2)v{ 1
(v+1)−x^2
22 (1!)(v+2)+x^4
24 (2!)(v+3)−···}providedvis not a negative integer.For the second solution,whenc=−v, replacing v
by−vin equation (42) above gives:a 2 k=(− 1 )k
22 k−v(k!)(k−v+ 1 )from which, when k= 0 ,a 0 =(− 1 )^0
2 −v(0!)( 1 −v)
=1
2 −v( 1 −v)since 0!=1 (see page 495)whenk=1,a 2 =(− 1 )^1
22 −v(1!)( 1 −v+ 1 )=− 1
22 −v(1!)( 2 −v)whenk=2,a 4 =(− 1 )^2
24 −v(2!)( 2 −v+ 1 )=1
24 −v(2!)( 3 −v)whenk=3,a 6 =(− 1 )^3
26 −v(3!)( 3 −v+ 1 )=1
26 −v(3!)( 4 −v)and so on.Hence,y=Bx−v{
1
2 −v( 1 −v)−x^2
22 −v(1!)( 2 −v)+x^4
24 −v(2!)( 3 −v)−···}i.e. J−v(x)=(x
2)−v{ 1
(1−v)−x^2
22 (1!)(2−v)+x^4
24 (2!)(3−v)−···}providedvis not a positive integer.Jv(x)andJ−v(x)are two independent solutions of the
Bessel equation; the complete solution is:
y=AJv(x)+BJ−v(x)whereAandBare constants