Power series methods of solving ordinary differential equations 511
Now try the following exercise
Exercise 197 Further problemson Bessel’s
equation and Bessel’s functions- Determine the power series solution of Bes-
sel’s equation:x^2d^2 y
dx^2+xdy
dx+(x^2 −v^2 )y= 0
whenv=2, up to and includingthe term in[ x^6.y=Ax^2{
1 −x^2
12+x^4
384−···}]- Find the power series solution of the
Bessel function:x^2 y′′+xy′+
(
x^2 −v^2)
y= 0
in terms of the Bessel functionJ 3 (x)when
v=3. Give the answer up to and including the
term inx^7.
⎡
⎢
⎢
⎣y=AJ 3 (x)=(x2) 3 { 1 4−x^2
22 5+
x^4
25 6−···}⎤
⎥
⎥
⎦- Evaluate the Bessel functionsJ 0 (x)andJ 1 (x)
whenx=1, correct to 3 decimal places.
[J 0 (x)= 0. 765 ,J 1 (x)= 0 .440]
52.7 Legendre’s equation and
Legendre polynomials
Another important differential equation in physics
and engineering applications is Legendre’s equation
of the form:( 1 −x^2 )
d^2 y
dx^2− 2 xdy
dx+k(k+ 1 )y=0or( 1 −x^2 )y′′− 2 xy′+k(k+ 1 )y=0wherek is a real
constant.
Problem 12. Determine the general power series
solution of Legendre’s equation.To solve Legendre’s equation
( 1 −x^2 )y′′− 2 xy′+k(k+ 1 )y=0 using the Frobenius
method:
(i) Let a trial solution be of the form
y=xc{
a 0 +a 1 x+a 2 x^2 +a 3 x^3+···+arxr+···}
(43)
wherea 0 =0,i.e. y=a 0 xc+a 1 xc+^1 +a 2 xc+^2 +a 3 xc+^3+···+arxc+r+··· (44)(ii) Differentiating equation (44) gives:y′=a 0 cxc−^1 +a 1 (c+ 1 )xc+a 2 (c+ 2 )xc+^1 +···+ar(c+r)xc+r−^1 +···andy′′=a 0 c(c− 1 )xc−^2 +a 1 c(c+ 1 )xc−^1+a 2 (c+ 1 )(c+ 2 )xc+···+ar(c+r− 1 )(c+r)xc+r−^2 +···(iii) Substitutingy,y′andy′′into each term of the
given equation:(
1 −x^2)
y′′− 2 xy′+k(k+ 1 )y=0gives:a 0 c(c− 1 )xc−^2 +a 1 c(c+ 1 )xc−^1+a 2 (c+ 1 )(c+ 2 )xc+···+ar(c+r− 1 )(c+r)xc+r−^2 +···−a 0 c(c− 1 )xc−a 1 c(c+ 1 )xc+^1−a 2 (c+ 1 )(c+ 2 )xc+^2 −···−ar(c+r− 1 )(c+r)xc+r−···− 2 a 0 cxc− 2 a 1 (c+ 1 )xc+^1 − 2 a 2 (c+ 2 )xc+^2 −···− 2 ar(c+r)xc+r−···+k^2 a 0 xc+k^2 a 1 xc+^1 +k^2 a 2 xc+^2 +···+k^2 arxc+r+ ···+ka 0 xc+ka 1 xc+^1 +···+karxc+r+···= 0 (45)(iv) Theindicial equationis obtained by equating the
coefficient of the lowest power ofx(i.e.xc−^2 )to
zero. Hence,a 0 c(c− 1 )=0 from which,c= 0 or
c= 1 sincea 0 =0.
For the term inxc−^1 ,i.e.a 1 c(c+ 1 )=0 With
c=1,a 1 =0; however, whenc=0,a 1 is inde-
terminate, since any value ofa 1 combined with
the zero value ofcwould make the product zero.
For the term inxc+r,
ar+ 2 (c+r+ 1 )(c+r+ 2 )−ar(c+r− 1 )
(c+r)− 2 ar(c+r)+k^2 ar+kar= 0