Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

Power series methods of solving ordinary differential equations 511


Now try the following exercise


Exercise 197 Further problemson Bessel’s
equation and Bessel’s functions


  1. Determine the power series solution of Bes-


sel’s equation:x^2

d^2 y
dx^2

+x

dy
dx

+(x^2 −v^2 )y= 0
whenv=2, up to and includingthe term in[ x^6.

y=Ax^2

{
1 −

x^2
12

+

x^4
384

−···

}]


  1. Find the power series solution of the
    Bessel function:x^2 y′′+xy′+


(
x^2 −v^2

)
y= 0
in terms of the Bessel functionJ 3 (x)when
v=3. Give the answer up to and including the
term inx^7.




y=AJ 3 (x)=

(x

2

) 3 { 1

 4


x^2
22  5

+
x^4
25  6

−···

}






  1. Evaluate the Bessel functionsJ 0 (x)andJ 1 (x)
    whenx=1, correct to 3 decimal places.
    [J 0 (x)= 0. 765 ,J 1 (x)= 0 .440]


52.7 Legendre’s equation and


Legendre polynomials


Another important differential equation in physics
and engineering applications is Legendre’s equation


of the form:( 1 −x^2 )


d^2 y
dx^2

− 2 x

dy
dx

+k(k+ 1 )y=0or

( 1 −x^2 )y′′− 2 xy′+k(k+ 1 )y=0wherek is a real
constant.


Problem 12. Determine the general power series
solution of Legendre’s equation.

To solve Legendre’s equation
( 1 −x^2 )y′′− 2 xy′+k(k+ 1 )y=0 using the Frobenius
method:


(i) Let a trial solution be of the form
y=xc

{
a 0 +a 1 x+a 2 x^2 +a 3 x^3

+···+arxr+···

}
(43)
wherea 0 =0,

i.e. y=a 0 xc+a 1 xc+^1 +a 2 xc+^2 +a 3 xc+^3

+···+arxc+r+··· (44)

(ii) Differentiating equation (44) gives:

y′=a 0 cxc−^1 +a 1 (c+ 1 )xc

+a 2 (c+ 2 )xc+^1 +···

+ar(c+r)xc+r−^1 +···

andy′′=a 0 c(c− 1 )xc−^2 +a 1 c(c+ 1 )xc−^1

+a 2 (c+ 1 )(c+ 2 )xc+···

+ar(c+r− 1 )(c+r)xc+r−^2 +···

(iii) Substitutingy,y′andy′′into each term of the
given equation:(
1 −x^2

)
y′′− 2 xy′+k(k+ 1 )y=0gives:

a 0 c(c− 1 )xc−^2 +a 1 c(c+ 1 )xc−^1

+a 2 (c+ 1 )(c+ 2 )xc+···

+ar(c+r− 1 )(c+r)xc+r−^2 +···

−a 0 c(c− 1 )xc−a 1 c(c+ 1 )xc+^1

−a 2 (c+ 1 )(c+ 2 )xc+^2 −···

−ar(c+r− 1 )(c+r)xc+r−···− 2 a 0 cxc

− 2 a 1 (c+ 1 )xc+^1 − 2 a 2 (c+ 2 )xc+^2 −···

− 2 ar(c+r)xc+r−···+k^2 a 0 xc

+k^2 a 1 xc+^1 +k^2 a 2 xc+^2 +···+k^2 arxc+r

+ ···+ka 0 xc+ka 1 xc+^1 +···

+karxc+r+···= 0 (45)

(iv) Theindicial equationis obtained by equating the
coefficient of the lowest power ofx(i.e.xc−^2 )to
zero. Hence,a 0 c(c− 1 )=0 from which,c= 0 or
c= 1 sincea 0 =0.
For the term inxc−^1 ,i.e.a 1 c(c+ 1 )=0 With
c=1,a 1 =0; however, whenc=0,a 1 is inde-
terminate, since any value ofa 1 combined with
the zero value ofcwould make the product zero.
For the term inxc+r,
ar+ 2 (c+r+ 1 )(c+r+ 2 )−ar(c+r− 1 )
(c+r)− 2 ar(c+r)+k^2 ar+kar= 0
Free download pdf