Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

Power series methods of solving ordinary differential equations 513


Hence, P 2 (x)=−


1
2

(
1 − 3 x^2

)
=

1
2

(3x^2 −1)

Problem 14. Determine the Legendre poly-
nomialP 3 (x).

Since inP 3 (x),n=k=3, then from the second part of
equation (47), i.e. the odd powers ofx:


y=a 1

{
x−

(k− 1 )(k+ 2 )
3!

x^3

+

(k− 1 )(k− 3 )(k+ 2 )(k+ 4 )
5!

x^5 − ···

}

i.e.y=a 1


{
x−
( 2 )( 5 )
3!

x^3 +
( 2 )( 0 )( 5 )( 7 )
5!

x^5

}

=a 1

{
x−

5
3

x^3 + 0

}

a 1 is chosen to makey=1whenx=1.


i.e. 1=a 1


{
1 −

5
3

}
=a 1

(

2
3

)
from which,a 1 =−

3
2

Hence,P 3 (x)=−


3
2

(
x−

5
3

x^3

)
orP 3 (x)=

1
2

(5x^3 − 3 x)

Rodrigue’s formula


An alternative method of determining Legendre poly-
nomials is by usingRodrigue’s formula, which states:


Pn(x)=

1
2 nn!

dn

(
x^2 − 1

)n

dxn

(48)

This is demonstrated in thefollowingworked problems.


Problem 15. Determine the Legendre polynomial
P 2 (x)using Rodrigue’s formula.

In Rodrigue’s formula, Pn(x)=


1
2 nn!

dn

(
x^2 − 1

)n

dxn
and whenn=2,


P 2 (x)=

1
22 2!

d^2 (x^2 − 1 )^2
dx^2

=

1
23

d^2 (x^4 − 2 x^2 + 1 )
dx^2
d
dx

(x^4 − 2 x^2 + 1 )

= 4 x^3 − 4 x

and

d^2

(
x^4 − 2 x^2 + 1

)

dx^2

=

d( 4 x^3 − 4 x)
dx

= 12 x^2 − 4

Hence,P 2 (x)=

1
23

d^2

(
x^4 − 2 x^2 + 1

)

dx^2

=

1
8

(
12 x^2 − 4

)

i.e. P 2 (x)=

1
2

(
3 x^2 − 1

)
the same as in Problem 13.

Problem 16. Determine the Legendre polynomial
P 3 (x)using Rodrigue’s formula.

In Rodrigue’s formula,Pn(x)=

1
2 nn!

dn

(
x^2 − 1

)n

dxn

and
whenn=3,

P 3 (x)=

1
23 3!

d^3

(
x^2 − 1

) 3

dx^3

=

1
23 ( 6 )

d^3

(
x^2 − 1

)(
x^4 − 2 x^2 + 1

)

dx^3

=

1
( 8 )( 6 )

d^3

(
x^6 − 3 x^4 + 3 x^2 − 1

)

dx^3

d

(
x^6 − 3 x^4 + 3 x^2 − 1

)

dx

= 6 x^5 − 12 x^3 + 6 x

d

(
6 x^5 − 12 x^3 + 6 x

)

dx

= 30 x^4 − 36 x^2 + 6

and

d

(
30 x^4 − 36 x^2 + 6

)

dx

= 120 x^3 − 72 x

Hence,P 3 (x)=
1
( 8 )( 6 )

d^3

(
x^6 − 3 x^4 + 3 x^2 − 1

)

dx^3

=

1
( 8 )( 6 )

(
120 x^3 − 72 x

)
=

1
8

(
20 x^3 − 12 x

)

i.e. P 3 (x)=

1
2

(
5 x^3 − 3 x

)
the same as in Problem 14.

Now try the following exercise

Exercise 198 Legendre’sequation and
Legendre polynomials


  1. Determine the power series solution of
    the Legendre equation:
    (
    1 −x^2


)
y′′− 2 xy′+k(k+ 1 )y=0when
(a)k=0(b)k=2, up to and including the
Free download pdf