Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

520 Higher Engineering Mathematics


have solutions:X=Aepx+Be−pxand
T=Cecpt+De−cptwhereA,B,CandDare constants.
ButX=0atx= 0 ,hence 0=A+Bi.e.B=−Aand
X=0atx=L,hence
0 =AepL+Be−pL=A(epL−e−pL).
Assuming (epL–e−pL)is not zero, thenA=0 and since
B=−A,thenB=0also.
This corresponds to the string being stationary; since it
is non-oscillatory, this solution will be disregarded.

Case 2:μ= 0
In this case, sinceμ=p^2 =0,T′′=0andX′′=0. We
will assume thatT(t)=0. SinceX′′=0,X′=aand
X=ax+bwhereaandbare constants. ButX=0at
x=0, henceb=0andX=axandX=0atx=L, hence
a=0. Thus, again, the solutionis non-oscillatoryand is
also disregarded.

Case 3:μ< 0
For convenience,
letμ=−p^2 thenX′′+p^2 X=0 from which,

X=Acospx+Bsinpx (1)

andT′′+c^2 p^2 T=0 from which,

T=Ccoscpt+Dsincpt (2)

(see worked Problem 4 above).
Thus, the suggested solutionu=XTnow becomes:

u={Acospx+Bsinpx}{Ccoscpt+Dsincpt}
(3)
Applying the boundary conditions:

(i) u=0whenx=0 for all values oft,
thus 0={Acos 0+Bsin0}{Ccoscpt
+Dsincpt}

i.e. 0 =A{Ccoscpt+Dsincpt}
from which,A= 0 ,(since{Ccoscpt
+Dsincpt} = 0 )
Hence, u={Bsinpx}{ Ccoscpt
+Dsincpt} (4)

(ii) u=0whenx=Lfor all values oft

Hence, 0={BsinpL}{Ccoscpt+Dsincpt}

NowB=0oru(x,t)would be identically zero.

Thus sinpL=0i.e.pL=nπorp=


L

for inte-
ger values ofn.
Substituting in equation (4) gives:

u=

{
Bsin

nπx
L

}{
Ccos

cnπt
L

+Dsin

cnπt
L

}

i.e. u=sin

nπx
L

{
Ancos

cnπt
L

+Bnsin

cnπt
L

}

(where constantAn=BCandBn=BD).There
will be many solutions, depending on the value of
n. Thus, more generally,

un(x,t)=

∑∞

n= 1

{
sin

nπx
L

(
Ancos

cnπt
L

+Bnsin

cnπt
L

)}
(5)

To findAnandBnwe put in the initial conditions
not yet taken into account.
(i) Att= 0 ,u(x, 0 )=f(x)for 0≤x≤L
Hence, from equation (5),

u(x, 0 )=f(x)=

∑∞

n= 1

{
Ansin

nπx
L

}
(6)

(ii) Also att= 0 ,

[
∂u
∂t

]

t= 0

=g(x)for 0≤x≤L

Differentiatingequation(5)withrespecttotgives:

∂u
∂t

=

∑∞

n= 1

{
sin
nπx
L

(
An

(

cnπ
L

sin
cnπt
L

)

+Bn

(
cnπ
L

cos

cnπt
L

))}

and whent= 0 ,

g(x)=

∑∞

n= 1

{
sin

nπx
L

Bn

cnπ
L

}

i.e. g(x)=


L

∑∞

n= 1

{
Bnnsin

nπx
L

}
(7)

From Fourier series (see page 638) it may be shown that:
Anis twice the mean value off(x)sin

nπx
L

between
x=0andx=L

i.e. An=
2
L

∫L

0

f(x)sin
nπx
L

dx

forn= 1 , 2 , 3 ,...(8)
Free download pdf