Exponential functions 35
Hence α=
1
θlnR
R 0=1
1500ln(
6 × 103
5 × 103)=1
1500( 0. 1823215 ...)= 1. 215477 ···× 10 −^4Hence α=1.215× 10 −^4 ,
correct to 4 significant figures.From above, ln
R
R 0=αθhence θ=
1
αlnR
R 0When R= 5. 4 × 103 ,α= 1. 215477 ...× 10 −^4 and
R 0 = 5 × 103
θ=1
1. 215477 ...× 10 −^4ln(
5. 4 × 103
5 × 103)=104
1. 215477 ...( 7. 696104 ...× 10 −^2 )= 633 ◦C,correct to the nearest degree.Problem 18. In an experiment involving
Newton’s law of cooling, the temperatureθ(◦C) is
given byθ=θ 0 e−kt. Find the value of constantk
whenθ 0 = 56. 6 ◦C,θ= 16. 5 ◦Candt= 83 .0seconds.Transposing θ=θ 0 e−ktgives
θ
θ 0=e−ktfrom which
θ 0
θ=1
e−kt=ektTaking Napierian logarithms of both sides gives:
lnθ 0
θ=ktfrom which,
k=1
tlnθ 0
θ=1
83. 0ln(
56. 6
16. 5)=1
83. 0( 1. 2326486 ...)Hencek=1.485× 10 −^2Problem 19. The currentiamperes flowing in a
capacitor at timetseconds is given by
i= 8. 0 ( 1 −e−t
CR), where the circuit resistanceRis
25 × 103 ohms and capacitanceCis
16 × 10 −^6 farads. Determine (a) the currentiafter
0.5seconds and (b) the time, to the nearest
millisecond, for the current to reach 6.0A. Sketch
the graph of current against time.(a) Currenti= 8. 0 ( 1 −e−t
CR)= 8 .0[1−e− 0. 5
( 16 × 10 −^6 )( 25 × 103 )]= 8. 0 ( 1 −e−^1.^25 )= 8. 0 ( 1 − 0. 2865047 ...)= 8. 0 ( 0. 7134952 ...)=5.71amperes(b) Transposingi= 8. 0 ( 1 −e−t
CR)givesi
8. 0= 1 −e−t
CRfrom which, e−t
CR= 1 −
i
8. 0=8. 0 −i
8. 0
Taking the reciprocal of both sides gives:et
CR=^8.^0
8. 0 −iTaking Napierian logarithms of both sides gives:t
CR=ln(
8. 0
8. 0 −i)Hencet=CRln(
8. 0
8. 0 −i)=( 16 × 10 −^6 )( 25 × 103 )ln(
8. 0
8. 0 − 6. 0)wheni= 6 .0 amperes,i.e. t=400
103ln(
8. 0
2. 0)
= 0 .4ln4. 0= 0. 4 ( 1. 3862943 ...)= 0 .5545s=555ms, to the nearest millisecond.Agraphofcurrent against timeisshowninFig.4.6.