Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

522 Higher Engineering Mathematics


from which,
X′′−μX=0andT′′−μT= 0.


  1. Lettingμ=−p^2 to give an oscillatory solution
    gives:


X′′+p^2 X=0andT′′+p^2 T= 0

The auxiliary equation foreach is:m^2 +p^2 = 0
from which,m=


−p^2 =±jp.


  1. Solving each equation gives:
    X=Acospx+Bsinpx,and
    T=Ccospt+Dsinpt.
    Thus,
    u(x,t)={Acospx+Bsinpx}{Ccospt+Dsinpt}.

  2. Applying the boundary conditions to determine
    constantsAandBgives:
    (i) u( 0 ,t)=0,hence 0=A{Ccospt+Dsinpt}
    from which we conclude thatA=0.
    Therefore,
    u(x,t)=Bsinpx{Ccospt+Dsinpt} (a)


(ii) u( 50 ,t)=0, hence
0 =Bsin50p{Ccospt+Dsinpt}. B=0,
hence sin50p=0 from which, 50p=nπand
p=

50


  1. Substituting in equation (a) gives:


u(x,t)=Bsin

nπx
50

{
Ccos

nπt
50

+Dsin

nπt
50

}

or, more generally,

un(x,t)=

∑∞

n= 1

sin

nπx
50

{
Ancos

nπt
50

+Bnsin
nπt
50

}
(b)

whereAn=BCandBn=BD.


  1. From equation (8),


An=

2
L

∫L

0

f(x)sin

nπx
L

dx

=

2
50

[∫
25

0

(
2
25

x

)
sin

nπx
50

dx

+

∫ 50

25

(
100 − 2 x
25

)
sin

nπx
50

dx

]

Each integral is determined using integration by
parts (see Chapter 43, page 420) with the result:

An=

16
n^2 π^2

sin


2

From equation (9),

Bn=

2
cnπ

∫L

0

g(x)sin

nπx
L

dx
[
∂u
∂t

]

t= 0

= 0 =g(x)thus,Bn= 0

Substituting into equation (b) gives:

un(x,t)=

∑∞

n= 1

sin

nπx
50

{
Ancos

nπt
50

+Bnsin

nπt
50

}

=

∑∞

n= 1

sin

nπx
50

{
16
n^2 π^2

sin


2

cos

nπt
50

+( 0 )sin

nπt
50

}

Hence,

u(x,t)=

16
π^2

∑∞

n= 1

1
n^2

sin

nπx
50

sin


2

cos

nπt
50

For stretched stringproblems as in problem 5 above, the
main parts of the procedure are:


  1. DetermineAnfrom equation (8).


Note that

2
L

∫ L

0

f(x)sin

nπx
L

dxisalwaysequal

to

8 d
n^2 π^2

sin


2

(see Fig. 53.3)


  1. DetermineBnfrom equation (9)

  2. Substitute in equation (5) to determineu(x,t)


0 x

y 5 f (x )

L

d

y

L
2

Figure 53.3
Free download pdf